簡易檢索 / 詳目顯示

研究生: 賴璿光
Syuan-Guang Lai
論文名稱: 全高分子複合材料研究:聚酯補強聚丙烯複合材料之界面改質與新式複合材料製程
The study of all-polymer composites: surface treatment of PET/PP composites and new composites manufacturing process
指導教授: 吳昌謀
Chang-Mou Wu
口試委員: 陳錦江
Jieng-Chiang Chen
鄭國彬
Kou-Bing Cheng
陳俊傑
Jung-Chieh Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 108
中文關鍵詞: 馬來酸酐接枝聚丙烯薄膜堆疊芯鞘型製程
外文關鍵詞: PP-g-MA, film stacking, core and sheath
相關次數: 點閱:272下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文將探討兩大部分,分別為聚酯織物補強聚丙烯複合材料與新式全高分子複合材料製程。
    聚酯織物補強聚丙烯複合材料(PET/PP複合材料)將著重在聚丙烯具有密度低(質量輕)、加工溫度低、取得容易,而聚對苯二甲酸乙二酯的優點則為高拉伸強度並容易染色,藉由結合這兩種高分子材料的優點,製成一質量輕,並具有高強度的PET/PP複合材料。
    複合材料製程中材料選用與使用材料的型態皆為重要的課題,本實驗使用長PET纖維織物進行補強以乘載荷重,能有效提升整體機械性質。為因應碳纖維複合材料的潮流,更選用色母染色的黑色無加撚PET紗進行織造,獲得2/2斜紋12k仿碳纖外觀織物。
    然而,這兩種材料,具有熱相容性上的問題,此界面不良的狀況,將影響基材與補強材受力時,無法將力有效傳導,導致基材與補強材脫層並破壞。本研究將使用馬來酸酐接枝聚丙烯進行基材改質。所得最佳拉伸應力達到156.8 MPa,楊氏模數達到4.2 GPa。
    而新式複合材料製程將由芯鞘型複合紗概念進行延伸,優點為適用於各式高分子。本研究將低熔點聚丙烯(基材)包裹於高強力聚丙烯紗(補強材),形成一srPP扁平紗並克服扁平紗紡織時翻紗問題,成功製備srPP織物,以其熔點差異,形成一加工視窗,熱壓製成srPP複合材料。拉伸應力達到112.1 MPa,楊氏模數2.1 GPa。


    In this study, surface treatment of PET/PP composites and new composites manufacturing process are discussed.
    Polypropylene has the advantages of light weight, low Tm and easy to get. And polyester has the advantages of high tensile properties and easy to dye. PET/PP composites combined these advantages to make it a light weight and high tensile properties composites.
    It’s an important issue to select materials for composites. In order to sustain load well, PET fabric is used. Because of it, the mechanical properties of PET/PP composites increased. The untwisted, solution dyed black PET yarn are used to make this PET/PP composites have carbon composites' appearance. High transparent PP is melt blended with PP-g-MA and PET fabric is pretreated with primer to solve the interfacial problems. PP-g-MA content and primer usage are discussed. The best tensile strength and young’s modulus of PET/PP composites are 156.8 MPa and 4.2 GPa.
    The new composites manufacturing process is extended by core and sheath method. High tenacity PP yarn and low melting temperature PP and are used as core and sheath to make a flat srPP yarn. By the difference of melting temperature, a processing window is formed. After woven, srPP composite is made by hot compaction. The tensile strength and young’s modulus are 112.1 MPa and 2.1 GPa.

    摘要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・I Abstract(英文摘要) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・II 目錄・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・II 表目錄・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・VII 圖目錄・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・VIII 第一章、 前言・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・1 1.1 研究背景・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・1 1.2 實驗動機・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・3 1.3 研究內容簡述・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・4 第二章、文獻回顧・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・6 2.1全高分子複合材料製程(srPP複合材料)・・・・・・・・・・・・・・6 2.2聚酯織物補強聚丙烯複合材料(PET/PP複合材料)・・・・・・7 2.1.1聚酯與聚丙烯間界面問題・・・・・・・・・・・・・・・・・・・・・・・7 2.1.2 界面剪切強度測試-液珠測試・・・・・・・・・・・・・・・・・・・・8 2.2 複合材料製程・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・10 2.3開孔拉伸測試・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・11 第三章、實驗材料與分析・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・13 3.1 PET/PP複合材料・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・13 3.1.1 PET/PP複合材料實驗流程圖・・・・・・・・・・・・・・・・・・13 3.1.2 PET/PP複合材料實驗材料・・・・・・・・・・・・・・・・・・・・14 3.1.3 碳纖維外觀PET織物織造・・・・・・・・・・・・・・・・・・16 3.1.4 改質PP薄膜製備-淋膜製程・・・・・・・・・・・・・・・・・17 3.1.5 PET/PP 複合材料製備-薄膜堆疊法・・・・・・・・・・・・・20 3.2 srPP 複合材料・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・21 3.2.1 srPP複合材料實驗流程圖・・・・・・・・・・・・・・・・・・・・・21 3.2.2 srPP複合材料實驗材料・・・・・・・・・・・・・・・・・・・・・・・22 3.2.3 扁平狀srPP紗製備・・・・・・・・・・・・・・・・・・・・・・・・・22 3.2.4 srPP織物織造・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・25 3.2.5 srPP複合材料製備・・・・・・・・・・・・・・・・・・・・・・・・・・・27 3.3實驗儀器與分析方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・28 3.3.1 光學立體顯微鏡(OM)・・・・・・・・・・・・・・・・・・・・・・・28 3.3.2 熱式差分析儀(DSC)・・・・・・・・・・・・・・・・・・・・・・・・・28 3.3.3 熔融流動指數量測(Melt Flow Indexer)・・・・・・・・・28 3.3.4 可見光穿透度量測(UV/visible)・・・・・・・・・・・・・・・・28 3.3.5 動態機械性質分析(DMA)・・・・・・・・・・・・・・・・・・・・29 3.3.6 液珠測試(Micro-droplet Test)・・・・・・・・・・・・・・・・・29 3.3.7 機械性質測試(Mechanical test)・・・・・・・・・・・・・・・・・31 3.3.7.1 拉伸性質(Tensile Test)・・・・・・・・・・・・・・・・・31 3.3.7.2 撓曲性質(Flexural Test)・・・・・・・・・・・・・・・・32 3.3.7.3 短樑剪切測試(Short Beam Shear Test)・・・・33 3.3.7.4 衝擊性質(Izod Impact Test)・・・・・・・・・・・・・34 3.3.7.5 開孔拉伸性質(open hole tensile test)・・・・・36 3.3.8 纖維體積含有率以及空孔含有率・・・・・・・・・・・・・・・・37 3.3.8.1 PET/PP複合材料・・・・・・・・・・・・・・・・・・・・・・・・37 3.3.8.2 srPP複合材料・・・・・・・・・・・・・・・・・・・・・・・・・・38 第四章、聚酯織物補強聚丙烯(PET/PP)複合材料結果與討論・・・39 4.1 高透明聚丙烯的選用・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・39 4.1.1 低混摻比例聚丙烯可見光穿透度量測・・・・・・・・・・・40 4.1.2 低混摻比例聚丙烯熔融流動指數量測・・・・・・・・・・・42 4.1.3 低混摻比例聚丙烯對聚酯纖維液珠測試・・・・・・・・・・44 4.2 高混摻比例改質聚丙烯性質評估・・・・・・・・・・・・・・・・・・・・・47 4.2.1 高混摻比例聚丙烯可見光穿透度量測・・・・・・・・・・・・47 4.2.2 高混摻比例聚丙烯熔融流動指數量測・・・・・・・・・・・・49 4.2.3 液珠測試・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・50 4.2.3.1 高混摻比例改質聚丙烯・・・・・・・・・・・・・・・・・・50 4.2.3.2 使用界面改質劑進行液珠測試・・・・・・・・・・・・52 4.3 機械性質與動態機械性質分析・・・・・・・・・・・・・・・・・・・・・・・54 4.3.1 PET/PP 複合材料拉伸性質・・・・・・・・・・・・・・・・・・・54 4.3.2 PET/PP 複合材料撓曲性質・・・・・・・・・・・・・・・・・・・63 4.3.3 PET/PP 複合材料短樑剪切測試・・・・・・・・・・・・・・・67 4.3.4 PET/PP 複合材料衝擊性質・・・・・・・・・・・・・・・・・・・70 4.3.5 PET/PP 複合材料動態機械性質分析・・・・・・・・・・・72 4.4 PET/PP 複合材料開孔拉伸性質・・・・・・・・・・・・・・・・・・・・・・75 4.4.1 開孔拉伸性質結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・75 4.4.2 圓孔對拉伸性質的影響・・・・・・・・・・・・・・・・・・・・・・・・78 第五章、全聚丙烯自增強複合材料(srPP)結果與討論・・・・・・・・・・80 5.1 機械性質與動態機械性質分析・・・・・・・・・・・・・・・・・・・・・・・80 5.1.1 srPP 複合材料拉伸性質・・・・・・・・・・・・・・・・・・・・・・・80 5.1.2 srPP 複合材料撓曲性質・・・・・・・・・・・・・・・・・・・・・・・83 5.1.3 srPP 複合材料短樑剪切測試・・・・・・・・・・・・・・・・・・・86 5.1.4 srPP 複合材料衝擊性質・・・・・・・・・・・・・・・・・・・・・・・88 5.1.5 srPP 複合材料動態機械性質分析・・・・・・・・・・・・・・・90 5.2 srPP 複合材料開孔拉伸性質・・・・・・・・・・・・・・・・・・・・・・・93 5.2.1 開孔拉伸性質結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・93 5.2.2 圓孔對拉伸性質的影響・・・・・・・・・・・・・・・・・・・・・・・・96 第六章、結果與結論・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・98 6.1 PET/PP複合材料・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・99 6.2 srPP複合材料・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・102 第七章、參考文獻・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・104

    [1] Barany T., Karger-Kocsis J., Czigany T.: Development and characterization of self-reinforced poly(propylene) composites: carded mat reinforcement. Polymers for Advanced Technologies, 17 (2006) 818-824.
    [2] G. Romhany, C.M. Wu, W.Y. Lai, J. Karger-Kocsis .: Fracture behavior and damage development in self-reinforced PET composites assessed by located acoustic emission and thermography: Effects of flame retardant and recycled PET. Composites Science and Technology 132 (2016) 76-83.
    [3] R.C. Nonato, B.C. Bonse, A study of PP/PET composites: Factorial design, mechanical and thermal properties, Polymer Testing 56 (2016) 167-173.
    [4] C. Saujanya, S. Radhakrishnan, Structure development and properties of PET fibre filled PP composites, Polymer 42 (2001) 4537-4548.

    [5] Hine P.J., Ward I.M., Jordan N.D., Olley R.H., Basset D.C.: The hot compaction behavior of woven oriented polypropylene fibers and tapes. I. Mechanical properties. Polymer, 44 (2003) 1117-1131.
    [6] Alcock B., Cabrera N.O., Barkoula N.-M., Loos J., Peijs T.: Low velocity impact performance of recyclable all-polypropylene composites. Composites Part A Applied Science and Manufacturing, 37 (2006) 716-726.
    [7] Hine P.J., Olley R.H., Ward I.M.: The use of interleaved film for optimising the production and properties of hot compacted, self reinforced polymer composites. Composites Science and Technology, 68 (2008) 1413-1421.
    [8] Alcock B., Cabrera N.O., Barkoula N.-M., Loos J., Peijs T.: The mechanical properties of unidirectional all-polypropylene composites. Composites Part A Applied Science and Manufacturing, 37 (2006) 716-726.
    [9] Khondker O.A., Yang X., Usui N., Hamada H.: Mechanical properties of textile-inserted PP/PP knitted composites using inject-compression molding. Composites Part A Applied Science and Manufacturing, 37 (2006) 2285-2299.
    [10] Abraham T., Banik K., Karger-Kocsis J.: All-PP composites (Pure) with unidirectional and cross-ply lay-ups: dynamic mechanical thermal analysis. Express Polymer Letters, 1 (2007) 519-526.
    [11] Izer A., Barany T.: Effect of consolidation on the flexural creep behaviour of all-polypropylene composite. Express Polymer Letters, 4 (2010) 210-216.
    [12] Hine P.J., Ward I.M.: Hot compaction of woven poly(ethylene terephthalate) multifilaments. Journal of Applied Polymer Science, 91 (2004) 2223-2233.
    [13] Yao D.; Li, R.; Nagarajan, P.: Single-polymer composites based on slowly crystallizing polymers. Polymer Engineering and Science, 46 (2006) 1223-1230.
    [14] Fakirov S., Duhovic M., Maitrot P., Bhattacharyya D.: From PET nano fibrils to nano fibrillar single-polymer composites. Macromolecular Materials and Engineering, 295 (2010) 515-518.
    [15] Rojanapitayakorn P., Mather P.T., Goldberg A. J., Weiss R.A.: Optical transparent self-reinforced poly(ethylene terephthalate)composites: molecular orientation and mechanical properties. Polymer, 46 (2005) 761-773.
    [16] Wright D. D., Lautenschlager E. P., Gilbert J. L.: Bending and fracture toughness of woven self-reinforced composite poly(methyl methacrylate). Journal of Biomedial Materials Research: Part A, 36 (1997) 441-453.
    [17] Wright D. D., Lautenschlager E. P., Gilbert J. L.: Interfacial properties of self-reinforced composite poly(methyl methacrylate). Journal of Biomedial Materials Research: Part A, 43 (1998) 153-161.
    [18] Pegoretti A., Zanolli A., Migliaresi C.: Flexural and interlaminar mechanical properties of unidirectional liquid crystalline single-polymer composites. Composites Science and Technology, 66 (2006) 1953-1962.
    [19] Pegoretti A., Zanolli A., Migliaresi C.: Preparation and tensile mechanical properties of unidirectional liquid crystalline single-polymer composites. Composites Science and Technology, 66 (2006) 1970-1979.
    [20] Li R., Yao D.: Preparation of Single Poly(lactic acid) Composites. Journal of Applied Polymer Science, 107 (2008) 2909-2916.
    [21] Bhattacharyya D., Maitrot P., Fakirov S.: Polyamide 6 single polymer composites. Express Polymer Letters, 3 (2009) 525-532.
    [22] Khondker O. A., Fukui T., Inoda M., Nakai A., Hamada H.: Fabrication and mechanical properties of aramid/nylon plain knitted composites. Composites Part A Applied Science and Manufacturing, 35 (2004) 1195-1205.
    [23] Hine P.J., Ward I.M.: Hot compaction of woven nylon 6,6 multifilaments. Journal of Applied Polymer Science, 101 (2006) 991-997.
    [24] Wulin Qiu, Kancheng Mai, Hamin Zeng.: Effect of Macromolecular Coupling Agent on the Property of PP/GF Composites. Journal of Applied Polymer Science, 71 (1999) 1537–1542.
    [25] C.I.W. Calcagno, C.M. Mariani, S.R. Teixeira, R.S. Mauler.: The role of the MMT on the morphology and mechanical properties of the PP/PET blends. Composites Science and Technology 68 (2008) 2193–2200
    [26] Mukesh Kumar, S. Mohanty, S.K. Nayak, M. Rahail Parvaiz.: Effect of glycidyl methacrylate (GMA) on the thermal, mechanical and morphological property of biodegradable PLA/PBAT blend and its nanocomposites. Bioresource Technology 101 (2010) 8406–8415
    [27] Hyun Sup Lee, Jong Duk Kim.: Effect of a Hybrid Compatibilizer on the Mechanical Properties and Interfacial Tension of a Ternary Blend With Polypropylene, Poly(lactic acid), and a Toughening Modifier. Polymer Composites 33 (2012)1154–1161
    [28] Priyanka Choudhary, Smita Mohanty, Sanjay K. Nayak, Lakshmi Unnikrishnan.: Poly(L-lactide)/Polypropylene Blends: Evaluation of Mechanical, Thermal, and Morphological Characteristics. Journal of Applied Polymer Science, 121, 3223–3237 (2011)
    [29] Huimei Kang, Xiang Lu, Yishe Xu.: Properties of immiscible and ethylene-butyl acrylate-glycidylv methacrylate terpolymer compatibilized poly (lactic acid) and polypropylene blends. Polymer Testing 43 (2015)
    [30] Bernard Miller, Pierre Muri and Ludwig Rebenfeld: A Microbond Method for Determination of the Shear Strength of a Fiber/Resin Interface. Composite Science and Technology 28 (1987)
    [31] Matabola K.P., DeVries A.R., Moolman F.S., Luyt A.S.: Single polymer composites: a review. Journal of Materials Science, 44 (2009) 6213-6222.
    [32] Teishev A., Incardona S., Migliaresi C., Marom G.: Polyethylene fibers-polyethylene matrix composites: preparation and physical properties. Journal of Applied Polymer Science, 50 (1993) 503-512.
    [33] Marais C., Feillard P.: Manufacturing and mechanical characterization of unidirectional polyethylene-fiber polyethylene-matrix composites, Composites Science and Technology, 45 (1992) 247-255.
    [34] Houshyar S., Shanks R.A., Hodzic A.: The effect of fiber concentration on mechanical and thermal properties of fiber-reinforced polypropylene composites. Journal of Applied Polymer Science, 96 (2005) 2260-2272.
    [35] Houshyar S., Shanks R.A.: Tensile properties and creep response of polypropylene fibre composites with variation of fibre diameter. Polymer International, 53 (2004) 1752-1759.
    [36] Houshyar S, Shanks RA, Hodzic A.: Influence of different woven geometry in poly(propylene) woven composites. Macromolecules Materials and Engineering, 290 (2005) 45-52.
    [37] Girão Coelho AM, Mottram JT. A review of the behaviour and analysis of bolted connections and joints in pultruded fibre reinforced polymers. Mater Des 2015;74:86-107.

    [38] Thoppul SD, Finegan J, Gibson RF. Mechanics of mechanically fastened joints in polymer–matrix composite structures – A review. Compos Sci Technol 2009;69:301-329.
    [39] Vieille B, Taleb L. About the influence of temperature and matrix ductility on the behavior of carbon woven-ply PPS or epoxy laminates: Notched and unnotched laminates. Compos Sci Technol 2011;71:998- 1007.
    [40] Mariatti M, Nasir M, Ismail H, Backlund J. Effect of hole drilling techniques on tensile properties of continuous fiber impregnated thermoplastic (COFIT) plain weave composites. J Reinf Plast Compos 2004;23:1173-1186.
    [41] O’Higgins RM, McCarthy MA, McCarthy CT. Comparison of open hole tension characteristics of high strength glass and carbon fibre- reinforced composite materials. Compos Sci Technol 2008;68:2770-2778.
    [42] Yudhanto A, Watanabe N, Iwahori Y, Hoshi H. The effects of stitch orientation on the tensile and open hole tension properties of carbon/epoxy plain weave laminates. Mater Des 2012;35:563-571.

    [43] Vieille B, Aucher J, Taleb L. Comparative study on the behavior of woven-ply reinforced thermoplastic or thermosetting laminates under severe environmental conditions. Mater Des 2012;35:707-719.
    [44] Hao A, Yuan L, Chen JY. Notch effects and crack propagation analysis on kenaf/polypropylene nonwoven composites. Compos Part A 2015;73:11-19.

    [45] Gobi Kannan T, Wu CM, Cheng KB. Influence of laminate lay-up, hole size and coupling agent on the open hole tensile properties of flax yarn reinforced polypropylene laminates. Compos Part B 2014;57:80-85.

    無法下載圖示 全文公開日期 2022/07/21 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE