簡易檢索 / 詳目顯示

研究生: 蔡繼中
Chi-chung Tsai
論文名稱: 一種結合影像區塊之時間與空間特性且可調適的 H.264 錯誤隱藏方法
A Hybrid MB-based Spatial/Temporal Adaptive H.264 Error Concealment Scheme
指導教授: 陳建中
Jiann-jone Chen
口試委員: 許新添
Hsin-teng Hsu
鍾國亮
Kuo-liang Chung
蘇柏齊
Po-chyi Su
張峰誠
Feng-cheng Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 76
中文關鍵詞: 錯誤修補隱藏H.264時間空間區塊
外文關鍵詞: MB-based, error, concealment
相關次數: 點閱:192下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年,在無線網路上傳輸多媒體碼流的技術逐漸受到重視。但在網路傳輸時產生的錯誤,卻會對即時編解碼的應用造成視覺品質失真。H.264/AVC採用了一些錯誤回復的工具來提供穩定的傳輸品質,但並沒有提供一個完善的錯誤修補能力,因此本文提出了改善的方法。在時間上的錯誤修補法裡,採用了具高度彈性之子區塊分類以及相對應的邊界匹配法來提供可利用的運動向量以修補錯誤的區塊。而在空間上的錯誤修補法裡,則採用了多邊擴張與權重內插法。結合以上兩種方法,組成了一個運用時間與空間特性且可調適之錯誤修補法。它可以偵測並改善在非預期場景變換後下一個畫面發生的品質失真,也可以改善在使用幀內編碼(intra coding)的畫面中所產生的失真。本文提出的方法並不需要修改任何H.264的語法或是編碼端的架構,而能夠提供良好的錯誤修補效果。另外,在與H.264內建的錯誤修補法的實驗比較中,不管在客觀的數據上或是主觀的視覺上,都驗證了所提方法具備更強健的抗傳輸誤差的能力。


    Transmitting multimedia bitstreams over wireless network becomes popular in recent years. However, due to network transmission errors, the real-time codec applications suffer unpleasant perceptual quality degradations. For H.264/AVC, it adopts some error resilient utilities to provide stable transmissions, but its coded streams are still vulnerable to transmission errors. The temporal error concealment is based on flexible sub-block classification with suitable boundary match algorithm. The motion compensated blocks can be used to replace error blocks. The spatial error concealment is based on multi-edge propagation and weighted interpolation. The lost image block due to transmission errors can be interpolated by referencing pixel values of adjacent blocks. Combining above two algorithms, we have proposed an adaptive spatial/temporal error concealment method. It can reinforce the video from errors due to unexpected scene changes and errors in an intra frame. The most promising feature of the proposed method is that there's no need to modify H.264 syntax or encoder framework to perform the error concealment. As compared to methods suggested by H.264, it demonstrates good capabilities of robustness to transmission errors and still provides better video qualities, subjectively or objectively.

    1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 H.264 review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1 Overview of H.264/AVC . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.1 History of H.264 . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.2 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.3 The H.264 codec . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.4 H.264 structure . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 H.264 VCL and NAL . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 Some utilities of H.264 . . . . . . . . . . . . . . . . . . . . . . . . . 17 3 Error Concealment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.1 H.264 error concealment . . . . . . . . . . . . . . . . . . . . . . . . 20 3.1.1 Intra error concealment of H.264 . . . . . . . . . . . . . . . 21 3.1.2 Inter error concealment of H.264 . . . . . . . . . . . . . . . 23 3.2 Other error concealment methods . . . . . . . . . . . . . . . . . . . 25 3.2.1 Edge detector and interpolation . . . . . . . . . . . . . . . . 26 3.2.2 Boundary match algorithm . . . . . . . . . . . . . . . . . . 27 4 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.1 Main structure of proposed method . . . . . . . . . . . . . . . . . . 30 4.2 Intra error concealment . . . . . . . . . . . . . . . . . . . . . . . . 32 4.2.1 Flexible edge propagation . . . . . . . . . . . . . . . . . . . 32 4.2.2 Multi-edge interpolation . . . . . . . . . . . . . . . . . . . . 34 4.2.3 Remained pixel interpolation . . . . . . . . . . . . . . . . . 35 4.3 Inter error concealment . . . . . . . . . . . . . . . . . . . . . . . . 36 4.3.1 Split mode decision . . . . . . . . . . . . . . . . . . . . . . . 36 4.3.2 Boundary match algorithm . . . . . . . . . . . . . . . . . . 39 4.3.3 Macroblock reconstruction . . . . . . . . . . . . . . . . . . . 42 4.4 Discussion of threshold . . . . . . . . . . . . . . . . . . . . . . . . . 42 5 Experimental Setup and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.1 Results of inter error concealment and FMO . . . . . . . . . . . . 46 5.2 Results of inter-intra mode for scene change . . . . . . . . . . . . 52 5.3 Results of intra-inter mode for GOP . . . . . . . . . . . . . . . . . 57 5.4 Results of different FMO . . . . . . . . . . . . . . . . . . . . . . . . 61 6 Conclusions and Future Researches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.2 Future Researches . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

    [1] ITU-T Rec. H.264 or ISO/IEC 14496-10 AVC, “Draft ITU-T Recommendation and
    Final Draft International Standard of Joint Video Specification,” JVT Doc. JVTG050,
    2003.
    [2] ITU-T, Joint Video Team (JVT), http://www.itu.int/ITU-T/studygroups/com16/jvt.
    [3] ITU Telecommunication Standardization Sector (ITU-T), http://www.itu.int/ITU-T.
    [4] ITU-T H.26L Standardisation (ITU-T Q6/16, VCEG), http://www.tnt.unihannover.
    de/project/vceg.
    [5] International Organization for Standardization, http://www.iso.org.
    [6] ISO/IEC, JTC1/SC29, WG11, http://www.chiariglione.org/mpeg.
    [7] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the
    H.264/AVC Video Coding Standard,” IEEE Trans. on Circuits and Systems for
    Video Technology, vol. 13, no.7, pp. 560-576, July 2003.
    [8] J. Postel, “User Datagram Protocol,” USC/Information Sciences Institute, RFC
    768, August 1980.
    [9] Khalid Sayood, Introduction to Data Compression 2nd Edition, Morgan Kaufmann
    Publishers, ISBN: 1-55860-558-4.
    [10] Iain E. G. Richardson, H.264 and MPEG-4 Video Compression: Video Coding for
    Next-generation Multimedia, John Wiley & Sons, Ltd. ISBN: 0-470-84837-5, 2003.
    [11] Joint Video Team of ITU-T and ISO/IEC, “Draft Text of H.264/AVC Fidelity Range
    Extensions Amendment,” Doc. JVT-L047, Sept. 2004.
    [12] D. Marpe, T. Wiegand, and S. Gordon, “H.264/MPEG4-AVC fidelity range extensions:
    tools, profiles, performance, and application areas,” IEEE Int. Conf. on Image
    Processing, ICIP’05., vol. 1, pp. 593-596, Sept. 2005.
    [13] S. Wenger et al, “RTP Payload Format for H.264 Video,” RFC 3984, Feb. 2005.
    [14] TML, H.264/AVC reference software JM 10.1, http://iphome.hhi.de/suehring/tml/.
    [15] Y. K. Wang, M. M. Hannuksela, V. Varsa, A. Hourunranta, and M. Gabbouj, “The
    error concealment feature in the H.26L test model,” Proc. Int. Conf. on Image Processing,
    vol. 2, pp. 729-732, Sept. 2002.
    [16] S. Shirani, F. Kossentini, and R. Ward, “Error concealment methods, a comparative
    study,” IEEE Canadian Conf. Electrical and Computer Engineering, vol 2, pp.
    835-840, May 1999.
    [17] F. Pan et al, “Fast mode decision algorithm for intraprediction in H.264/AVC video
    coding,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 15, no. 7,
    pp. 813-822, July 2005.
    [18] D.Wu et al, “Fast intermode decision in H.264/AVC video coding,” IEEE Trans. on
    Circuits and Systems for Video Technology, vol. 15, no. 7, pp. 953-958, July 2005.
    [19] J. Lee and B. Jeon, “Fast mode decision for H.264,” IEEE Int. Conf. on Multimedia
    and Expo, ICME’04., vol. 2, pp. 1131-1134, June 2004.
    [20] S. C. Pei and Y. Z. Chou, “Novel error concealment method with adaptive prediction
    to the abrupt and gradual scene changes,” IEEE Trans. on Multimedia, vol. 6,
    no. 1, pp. 158-173, Feb. 2004.
    [21] Y. Xu and Y. Zhou, “H.264 video communication based refined error concealment
    schemes,” IEEE Trans. Consumer Electronics, vol. 50, no. 4, pp. 1135-1141, Nov.
    2004.
    [22] Y. Zhao et al, “Spatial error concealment based on directional decision and intra
    prediction,” IEEE Int. Symp. on Circuits and Systems, ISCAS’05., vol. 3, pp. 2899-
    2902, May 2005.
    [23] W. Kwok and H. Sun, “Multi-Directional Interpolation for Spatial Error Concealment,”
    IEEE Trans. on Consumer Electronics, vol. 39, no. 3, pp. 455-460, Aug.
    1993.
    [24] O. Nemethova, A. Al-Moghrabi, and M. Rupp, “Flexible Error Concealment for
    H.264 Based on Directional Interpolation,” Int. Conf. on Wireless Networks, Comm.
    and Mobile Computing, vol. 2, pp. 1255-1260, June 2005.
    [25] J. W. Suh and Y. S. Ho, “Error concealment based on directional interpolation,”
    IEEE Trans. on Consumer Electronics, vol.43, no.3, pp. 295-302, Aug. 1997.
    [26] T. S. Chong et al, “Temporal error concealment for video transmission,” IEEE Int.
    Conf. on Multimedia and Expo, ICME’04., vol. 2, pp. 1363-1366 ,June 2004.
    [27] S. Belfiore, L. Crisa, M. Grangetto, E. Magli, and G. Olmo, “Robust and edgepreserving
    video error concealment by coarse-to-fine block replenishment,” Proc.
    IEEE Int. Conf. Acoustics, Speech, and Signal Processing, ICASSP, vol. 4, pp. 3281-
    3284, May 2002.
    [28] S. Belfiore, M. Grangetto, E. Magli, and G. Olmo, “An edge and texture preserving
    algorithm for video error concealment,” Proc. IEEE Int. Workshop on Multimedia
    Signal Processing, MMSP, pp. 121-124, Dec. 2002.
    [29] S. Belfiore, M. Grangetto, E. Magli, and G. Olmo, “An error concealment algorithm
    for streaming video,” Proc. IEEE Int. Conf. on Image Processing, ICIP’03, vol. 3, pp.
    649-652, Sept. 2003.
    [30] S. Belfiore, M. Grangetto, E. Magli, and G. Olmo, “Spatiotemporal error concealment
    with optimized mode selection and application to H.264,” Signal Process.,
    Image Commun., pp. 907-923, Nov. 2003.
    [31] S. Belfiore, M. Grangetto, E. Magli, and G. Olmo, “Concealment of whole-frame
    losses for wireless low bit-rate video based on multiframe optical flow estimation,”
    IEEE Trans. on Multimedia, vol. 7, no. 2, pp. 316-329, Apr. 2005.
    [32] P. Baccichet et al, “Frame concealment for H.264/AVC decoders,” IEEE Trans. on
    Consumer Electronics, vol. 51, no. 1, pp. 227-233, Feb. 2005.
    [33] P. Baccichet and A. Chimienti, “A low complexity concealment algorithm for the
    whole-frame loss in H.264/AVC,” IEEE 6th Workshop on Multimedia Signal Processing,
    pp. 279-282, Oct. 2004.
    [34] D. Kim, S. Yang and J. Jeong, “A new temporal error concealment method for
    H.264 using adaptive block sizes” IEEE Int. Conf. on Image Processing, ICIP’05.,
    vol. 3, pp. 928-931, Sept. 2005.
    [35] L. Atzori, F. G. B. De Natale, and C. Perra, “A spatio-temporal concealment
    technique using boundary matching algorithm and mesh-based warping (BMAMBW),”
    IEEE Trans. on Multimedia, vol. 3, no. 3, pp. 326-338, Sep. 2001.
    [36] M. J. Chen and S.Y. Lo, “Temporal error concealment algorithm using two-step
    block matching principle,” Proc. IEEE Int. Conf. on Consumer Electronics, Los Angeles,
    CA, pp. 172-173, Jun. 2001.
    [37] M. J. Chen, C.S. Chen, and M.C. Chi, “Recursive block-matching priciple for error
    concealment algorithm,” Proc. IEEE Int. Symp. on Circuits and Systems, pp. 528-
    531, May 2003.
    [38] M. J. Chen, C.S. Chen, and M.C. Chi, “Temporal error concealment algorithm by
    recursive block-matching principle,” IEEE Trans. Circuits and Systems for Video
    Technology, vol. 15, no. 11, pp. 1385-1393, Nov. 2005.
    [39] M. J. Chen, W.W. Liao, and M.C. Chi, “Robust temporal error concealment for
    H.264 video decoder,” Int. Conf. on Consumer Electronics, ICCE’06., pp. 383-384,
    Jan. 2006.
    [40] J. Zheng and L.P. Chau, “A Motion Vector Recovery Algorithm for Digital Video
    Using Lagrange Interppolation,” IEEE Trans. on Broadcasting, vol. 49, no. 4, pp.
    383-389, dec. 2003.
    [41] J. Zheng and L.P. Chau, “A temporal error concealment algorithm for H.264 based
    on plane estimation,” Proc. Joint Conf. of 4th Int. Conf. on Information, Communications
    and Signal Processing and 4th Pacific Rim Conf. on Multimedia, ICICSPCM
    2003, vol.1, pp. 253-257, Dec. 2003.
    [42] J. Zheng and L.P. Chau, “A temporal error concealment algorithm for H.264 using
    Lagrange interpolation,” IEEE Int. Symp. on Circuits and Systems, ISCAS’04, vol
    2, pp. 133-136, May 2004.
    [43] C. S. Chen et al, “Motion vector based error concealment algorithms,” IEEE 3rd
    Pacific Rim Conf. Multimedia, pp. 425-433, 2002.
    [44] J.W. Suh, Y. S. Ho, “Motion vector recovery for error concealment based on distortion
    modeling,” Conf. Rec. of the 30-15th Asilomar Conf. on Signals, Systems and
    Computers, vol. 1, pp. 190-194, Nov. 2001.
    [45] M. E. Al-Mualla, C.N. Canagarajah, and D.R. Bull, “Motion field interpolation for
    temporal error concealment,” IEE Proc. Vision, Image and Signal Processing, vol.
    147, no. 5, pp. 445-453, Oct. 2000.
    [46] HHI Image Conmunication, Scalable Extension of H.264/AVC,
    http://ip.hhi.de/imagecom G1/savce/index.htm.

    無法下載圖示 全文公開日期 2011/07/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE