簡易檢索 / 詳目顯示

研究生: 林建偉
Jian-Wei Lin
論文名稱: 提升虛擬實驗室系統發展效率與使用者互動之新設計機制
New Designing Mechanisms to Enhance Development Efficiency and User Interaction of Virtual Laboratory
指導教授: 賴源正
Yuan-Cheng Lai
口試委員: 徐俊傑
Chiun-Chieh Hsu
陳俊良
Jiann-Liang Chen
周立德
Li-Der Chou
李炯三
Chiung-San Lee
學位類別: 博士
Doctor
系所名稱: 管理學院 - 資訊管理系
Department of Information Management
論文出版年: 2008
畢業學年度: 97
語文別: 英文
論文頁數: 78
中文關鍵詞: Web-based應用遠端控制電子儀器虛擬實驗室即時影像
外文關鍵詞: Web-based applications, remote control, electronic instrumentation, virtual laboratory, real-time video
相關次數: 點閱:399下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

由於儀器控制與網路技術的興起,經由網際網路遠端進行實驗室的實驗已可實現。經由虛擬儀器控制的介面,學生或工程師可以在任何時間及任何地點遠端控制儀器與設備來進行控制及實驗。這樣的虛擬實驗室概念已在工程應用與遠距教學上扮演重要的角色。
本論文主要探討虛擬實驗室,並提出三個應用在產業與教育領域之系統。第一個是單一實驗虛擬實驗室,由位於同一區域內數個相連接的儀器設備所組成,此實驗以環境測試為主,目的為在產業上測試並評估電子樣品的可靠度。在此系統中我們提出二階層式的軟體架構與設計考量,以提昇系統發展之效率。上層的Web Application可直接引用底層的COM元件所提供的介面與呼叫流程。此COM元件主要是負責整合各種不同的儀器控制機制與協調儀器存取;而Web application負責資料庫設計、網路安全與使用者圖形介面的議題。此系統允許使用者在遠端進行環境實驗、監視測試情況、並取得測試資料。
第二個是分散式實驗虛擬實驗室,由分散在不同地方的實驗所組成,目的在提供使用者以透明的方式來遠端操作與練習更多樣性的實驗。在此系統中,我們採用分散式物件導向技術.NET Remoting來整合分散於各地區域實驗,以獲得較好的網路效能與良好的擴充性。另外,採用AJAX (Asynchronous JavaScript and XML) 技術以提供較好的互動性與輕量的使用者圖形介面。同時也提供適當的管理機制,經由管理網頁以方便管理使用者、教導者、與實驗,並建立起彼此間使用的關係。同時,經由一些學生先期測試,整體而言,系統得到正面的評估結果,也顯示系統的有效性與正確性。
最後則是設計出兩個分別適用於單一實驗虛擬實驗室與分散式實驗虛擬實驗室的即時視訊串流架構,可讓使用者能在遠端實驗期間觀看所有儀器的即時影像。在此成果中一個影像控制伺服器可同時執行多個串流程序,多個儀器可同時被多個使用者經瀏覽器監視。我們所提出的架構具有良好的擴充性,並可以根據目前系統負荷或視覺上的需求,經由管理網頁來動態調整影像的服務與輸出品質。效能評估結果也證實所提出方案的可行性。


Due to the popularity of controllable instrumentation and the wide diffusion of network technology, conducting laboratory experiments remotely via the Internet has been realized. Through virtual instrument control panels, students and engineers can remotely control real instruments and conduct experiments at any time and from any location. Such virtual laboratory concepts have played an essential role in distance learning and engineering applications.
This dissertation investigates virtual laboratory and present three works applying to the industrial and educational domains. The first work is a Single-Experiment Virtual Laboratory (SEVL) which consists of several adjacent instruments located in a same geographic place. The single experiment is dedicated for environmental testing, mainly for testing and evaluating the reliability of the electronic specimen in industrial applications. In this work, we proposed a two-layer software architecture and designing considerations and expected to promote the efficiency of the system development. The upper layer, called the Web application, can immediately employ the uniform interface and follow the call flow provided in the lower layer, called the COM component. The COM component integrates various instrument control mechanisms and coordinates concurrent instrument access, while the Web application addresses database design, network security, and graphic user interface (GUI) issues. This developed system allows users to remotely conduct environmental experiments, monitor testing condition, and acquire testing data.
The second work is a Distributed-Experiment Virtual Laboratory (DEVL), which consists of the scattered experiments located in different places. The objective of such a laboratory is to offer users with the capability of remotely performing and practicing more diverse experiments in a transparent manner. In this work, the distributed object technique, .NET Remoting, is adopted to integrate scattered experiments, resulting in a better network performance and a well-extendable architecture. Additionally, the AJAX (Asynchronous JavaScript and XML) technique is adopted to provide a more interactive and lightweight GUI (Graphic User Interface) without browser plug-ins. Moreover, adequate management functionalities offered by the developed system through administrative Web pages facilitates to well manage users, instructors and experiments, as well as further establishing their relationships. Though preliminarily tested by some students, all, the system obtained positive evaluation and also revealed its effectiveness and correctness.
The final work is to devise two promising real-time video streaming architectures to individually cope with SEVL and DEVL environments, enabling clients to view real-time video of the all involved instruments during a remote experiment. In this work, by means of running multiple concurrent streaming processes at a video control server, multiple instruments can be monitored simultaneously by multiple clients. The proposed architectures possess excellent scalability. Also the provided services and output quality of a real-time video can be dynamically adjusted depending on system load and visual requirements via administrative Web pages. The performance evaluation results have verified their feasibility.

TABLE OF CONTENTS 摘要 I ABSTRACT III 誌謝 V TABLE OF CONTENTS VI TABLE OF GLOSSARY VIII LIST OF FIGURES IX Chapter 1. Introduction 1 1.1. Background 1 1.2. Motivation and Contribution 2 1.3. Organization of This Dissertation 6 Chapter 2. Related Works 7 2.1. Single-Experiment Virtual Laboratory 7 2.2. Distributed Experiments Virtual Laboratory 9 2.3. Live Video of Capturing of Real Instrumentation 10 Chapter 3. Efficient Development of a Web-based Environmental Testing System Using a Novel Two-Layer Software Architecture 12 3.1. Introduction 12 3.2. Proposed Architecture 13 3.2.1. Considerations in the Lower Layer (COM Component) 14 3.2.2. Considerations in the Upper Layer (Web Application) 19 3.3. WEB AMS 20 3.3.1. Laboratory Setup 20 3.3.2. Software Implementation 22 3.4. Operating Procedure and Some Presentations 26 3.5. Summary 29 Chapter 4. A High-Performance and Well-Manageable Distributed Experiment Virtual Laboratory with an Object-Oriented Approach 31 4.1. Introduction 31 4.2. Novel Features of HPWM 32 4.2.1. Distributed Technology using .NET Remoting 32 4.2.2. Browsing with Lightweight GUI 34 4.2.3. Adequate Management Functionalities 35 4.3. Software Structure 36 4.3.1. NET Remoting 37 4.3.2. DEVL Web Application 38 4.3.3. Instrument Control Software 42 4.4. HPWM System 44 4.5. Summary 50 Chapter 5. The Manageable Video Streaming Systems for On-Line Monitoring of Virtual Laboratory Experiments 52 5.1. Introduction 52 5.2. The Design Structure for SEVL 53 5.2.1. Video Stream Component 53 5.2.2. Web Application 56 5.3. The Design Structure for DEVL 58 5.3.1. NET Remoting 59 5.3.2. Video Stream Software 60 5.3.3. Web Application 62 5.4. System Performance Evaluation 62 5.4.1. CPU Utilization 63 5.4.2. Bandwidth Consumption 65 5.5. Summary 67 Chapter 6. Conclusions and Future Works 69 6.1. Conclusions 69 6.2. Future Works 70 References 71 Publication List 77 Vita 78

[1]. A. Ferrero and S. Salicone, “Towards a Hypertext of Electric Measurement: Different Approaches for an On-line, Remote, Didactic Lab,” IEEE Transactions on Instrumentation and Measurement, vol. 56, no. 1, pp. 89-94, Feb. 2007.
[2]. A. Ferrero, S. Salicone, C. Bonora, and M. Parmigiani, “ReMLab: A Java-Based Remote, Didactic Measurement Laboratory,” IEEE Transactions on Instrumentation and Measurement, vol. 52, no. 3, pp. 710-715, June 2003.
[3]. C. C. Ko, B. M. Chen, S. H. Chen, V. Ramakrishnan, R. Chen, S. Y. Hu, and Y. Zhuang, ”A Large-scale Web-based Virtual Oscilloscope Laboratory Experiment,” IEE Engineering Science and Education Journal, vol. 9, no. 2, pp. 69-76, April 2000.
[4]. C. C. Ko, B. M. Chen, S. Hu, V. Ramakrishnan, C. D. Cheng, Y. Zhuang, and J. Chen, ”A Web-based Virtual Laboratory on a Frequency Modulation Experiment,” IEEE Transactions on Instrumentation and Measurement, vol. 31, no. 3, pp. 295-303, Aug. 2001.
[5]. J. W. Lin, Y. C. Lai, H. H. Peng, and W. Wu, “A Web-based Environmental Experiment System Using Microsoft .NET and COM,” IEEE Instrumentation and Measurement Technology Conference, Italy, pp. 1558-1563, May 2006.
[6]. J. Guo, D. Kettler, M. Al-Dahhan, “A chemical engineering laboratory over distributed control and measurement systems,” Computer Applications in Engineering Education, vol. 15,no. 2, pp. 174-184, 2007.
[7]. L. Wang, P. Orban, A. Cunningham, and S. Lang, “Remote real-time CNC machining for web-based manufacturing,” Robotics and Computer-Integrated Manufacturing, vol. 20,no. 6,pp. 563-571, 2004.
[8]. H. J. Kim, W. S. Chu, S. H. Ahn, D. S. Kim, and C. S. Jun, ”Web-Based Design and Manufacturing Systems for Micromachining: Comparison of Architecture and Usability,” Computer Applications in Engineering Education, vol. 14, no. 3, pp. 169-177, 2006.
[9]. H. C. Lin, ”A Remote Monitoring and Control-Based Precise Multilocation Riveting System,” Computer Applications in Engineering Education, vol. 13, no. 4, pp. 316-323, 2005.
[10]. J. L. Guzman, M. Berenguel, F. RodrÍguez, and S. Dormido, ”Web-Based Remote Control Laboratory Using a Greenhouse Scale Model,” Computer Applications in Engineering Education, vol. 13, no. 2, pp. 111-124, 2005.
[11]. H. C. Lin, ”Web-Based Remote Online Maximum Wind Power Monitoring and Control System,” Computer Applications in Engineering Education, vol. 15, no. 2, pp. 155-165, 2007.
[12]. Emil M. Pctriu, “Instrumentation and Measurement Technology and Application,” IEEE Technology update series, IEEE Press, 1998.
[13]. L. Cristaldi, A. Ferrero, and V. Piuri, “Programmable instruments, virtual instruments and distributed measurement systems,” IEEE Instrum. Meas. Mag., vol. 2, no. 3, pp. 20–27, 1999.
[14]. H. Goldberg, “What is virtual instrumentation, ”IEEE Instrum. Meas. Mag., vol. 3, No. 4, pp. 10-13, 2000.
[15]. Remigiusz J. Rak and Andrzej Michalski, "Education in Instrumentation and Measurement: The Information and Communication Technology Trends," IEEE Instrum. Meas. Mag., vol. 8, no. 2, pp. 61-69, 2005.
[16]. J. A. Mendez, C. Lorenzo, L. Acosta, S. Torres, and E. Gonzalez,” A Web-Based Tool for Control Engineering Teaching,” Computer Applications in Engineering Education, vol. 14, no. 3, pp. 178-187, 2006.
[17]. Q. Shuren, B. Lin, and L. Xiaofeng, ”Development of the Networked Virtual Instrument Lab for Vibration Measuring Based on Microsoft .NET,” IEEE Instrumentation and Measurement Technology Conference, Italy, pp.1286-1289, 2004.
[18]. L. Benetazzo, M. Bertocco, F. Ferraris, A. Ferrero, C. Offelli, M. Parvis, and V. Piuri, “A web-based distributed virtual laboratory,” IEEE Transactions on Instrumentation and Measurement, vol. 49, no. 2, pp. 349-356, Apr. 2000.
[19]. M. Chirico, A. M. Scapolla, and A. Bagnasco, “A New and Open Model to Share Laboratories on the Internet,” IEEE Transactions on Instrumentation and Measurement, vol. 54, no. 3, pp. 1111-1117, June 2005.
[20]. G. Canfora, P. Daponte, and S. Rapuano, “Remotely accessible laboratory for electronic measurement teaching,” Comput. Stand. Interfaces, vol. 26, no. 6, pp. 489-499, 2004.
[21]. Y. Yan, Y. Liang, X. Du, H. S. Hasane, and A. Ghorbani, “Put Labs Online with Web Services,” IEEE IT Professional, pp. 37-44, April 2006.
[22]. R. Kumar, K. Sridharan, and K. Srinivasan, ”The Design and Development of a Web-Based Data Acquisition System,” IEEE Transactions on Instrumentation and Measurement, vol. 51, no.3, pp. 427-432, June 2002.
[23]. J. W. Lin, Y. C. Lai, A. Lin, H. H. Peng and Y. C. Szu, “An Object-Oriented Approach for Developing Distributed Measurement Laboratory Using Microsoft .NET technology,” IEEE Instrumentation and Measurement Technology Conference, Poland, pp. 1-5, May 2007.
[24]. A. Sand, H. Slinde, and T. A. Fjeldly, ”A Secure Approach to Distributed Internet-Enabled Metrology,” IEEE Transactions on Instrumentation and Measurement, vol. 56, no. 5, pp. 1979-1985, Oct. 2007.
[25]. Microsoft Inc., http://msdn.microsoft.com/webservices/remoting/default.aspx?pull=/library/en-us/dndotnet/html/hawkremoting.asp
[26]. L. D. Paulson, ”Building Rich Web Applications with Ajax,” IEEE Computer, vol. 38, no. 10, pp. 14-17, Oct. 2005.
[27]. Electronics Testing Center, Taiwan, Http://www.etc.org.tw
[28]. A. A. P. Pohl, G. A. Michelon, S. M. Vidal, H. S. Filho, and K. V. O. Fonseca, “Remote RF and Baseband Video Measurement Laboratory Based Upon Open-Code Software,” IEEE Transactions on Instrumentation and Measurement, vol. 57, no. 3, pp. 556-564, Mar. 2008.
[29]. N. Ranaldo, S. Rapuano, M. Riccio, and F. Zoino, “On The Use of Video-Streaming Technologies for Remote Monitoring of Instrumentation,” IEEE Instrumentation and Measurement Technology Conference, Italy, pp. 861-866, April 2006.
[30]. N. Ranaldo, S. Rapuano, M. Riccio, and F. Zoino, ” Remote Control and Video Capturing of Electronic Instrumentation for Distance Learning,” IEEE Transactions on Instrumentation and Measurement, vol. 56, no. 4, pp. 1419-1428, Aug. 2007.
[31]. IEC 60068-1, Environmental Testing Part1: General and Guidance, 1992.
[32]. MIL-STD-202, Test Method Standard Electronic and Electrical Component Parts, 2002.
[33]. MIL-STD-810, Environmental Engineering Considerations and Laboratory Tests, 1995.
[34]. K. G. Fertitta and J. M. Harvey, ”The Role of ActiveX and COM In ATE,” http://www.vektrex.com/Support/kb/Autotestcon1999Paper.PDF.
[35]. M, Antonelli, S. G. Dellepiane, and M. Goccia, ”Design and Implementation of Web-Based Systems for Image Segmentation and CBIR,” IEEE Transactions on Instrumentation and Measurement, vol. 55, no. 6, pp. 1869 – 1877, 2006.
[36]. National Instruments Inc., http://zone.ni.com/devzone/conceptd.nsf/webmain/B28538EFF4600373862569F500564CCC?opendocument
[37]. VXIplug&play Systems Alliance, http://www.vxipnp.org
[38]. Interchangeable Virtual Instrument Foundation, http://www.ivifoundation.org
[39]. J. Beveridge, and R.Wiener, Multithreading Applications in Win32: The Complete Guide to Threads. Addison Wesley, 1997.
[40]. ESPEC Inc., ”User Manual Temperature (&Humidity) Chamber Plantinous K Series Chamber (Communication Function),” http://www.espec.com
[41]. Keithley Instruments Inc., ”Model 2750 Multimeter/Switch System User's Manual,” http://www.keithley.com
[42]. Keithley Instruments Inc., ”Keithley 2700 Series IVI Help,” http://www.keithley.com
[43]. Carlosag Inc., “Free WebChart control for ASP.NET,” http://www.carlosag.net/Tools/WebChart/Default.aspx
[44]. Viscom Software, http://www.viscomsoft.com/products/videocap
[45]. Microsoft Inc., http://msdn2.microsoft.com/en-us/library/a4t23ktk.aspx
[46]. C. W. Smullen III and S. A. Smullen, “Modeling AJAX Application Performance,” Proceeding of Web Technologies, Applications, and Services, Canada, July 2006.
[47]. S. Rapuano, F. Zoino, “A Learning Management System Including Laboratory Experiments on Measurement Instrumentation,” IEEE Transactions on Instrumentation and Measurement, vol. 55, no. 5, pp. 1757-1766, October 2006.
[48]. Microsoft Inc., http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/frlrfSystemThreadingMutexClassTopic.asp
[49]. SCPI Consortium, http://www.scpiconsortium.org/index.htm
[50]. Agilent Technologies, “Agilent 34420A Nano Volt / Micro Ohm Meter User’s Guide,” http://www.agilent.com
[51]. Agilent Technologies, “Agilent 54621A/22A/24A/41A/42A Oscilloscopes and Agilent 54621D/22D/41D/42D Mixed-Signal Oscilloscopes Programmer’s Guide,” http://www.agilent.com
[52]. Hewlett Packard, “HP 8116A 50MHz Programmable Pulse/Function Generator Operating, Programming and Servicing Manual,” http://www.hp.com
[53]. Hewlett Packard, “HP 4338A Milliohmmeter Operation Manual,” http://www.hp.com
[54]. Agilent Technologies, “Agilent 4284A Precision LCR Meter Operation Manual,” http://www.agilent.com
[55]. Microsoft Inc., “Windows Media Encoder 9 Series SDK Help,” http://www.microsoft.com

QR CODE