簡易檢索 / 詳目顯示

研究生: 朱輝南
Huy Nam Chu
論文名稱: 可重置合成傳輸線及其於可重置天線與相位陣列應用之研究
A Study of Reconfigurable Synthesized Transmission Line and Its Applications to Reconfigurable Antenna and Phased Array
指導教授: 馬自莊
Tzyh-Ghuang Ma
口試委員: 周錫增
Hsi-Tseng Chou
陳士元
Shi-Yuan Chen
張志揚
Chi-Yang Chang
紀佩綾
Pei-Ling Chi
林祐生
Yo-Shen Lin
陳晏笙
Yen-Sheng Chen
廖文照
Wen-Jiao Liao
馬自莊
Tzyh-Ghuang Ma
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 151
中文關鍵詞: 天線陣列波束切換波束控制枝幹耦合器巴特勒矩陣相位陣列功率分配器功率分配比可重置天線可重置元件合成傳輸線槽孔天線陣列
外文關鍵詞: Antenna array, beam-switching, beam-steering, branch-line coupler, Butler matrix, phased array, power divider, power division ratio, reconfigurable antenna, reconfigurable components, synthesized transmission line, slot antenna array
相關次數: 點閱:423下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文致力於實現合成傳輸線之相位可重置操作特性,在引入變容二極體進行調制下,使合成傳輸線具有相位可重置之傳輸響應。藉由此創新之合成傳輸線進行延伸整合,本論文成功設計並實現多款相位可重置天線陣列與元件,並於單一頻率下以相當低的直流功耗完成實驗驗證。
首先,本論文成功將變容二極體成功整合於合成傳輸線,使其可重置性可視為一射頻開關,並能操作於兩種操作模態:其一為傳統延遲線;其二為開路電路以隔絕訊號。基於此可重置傳輸線之特性,提出一串聯饋入槽孔天線陣列設計。該設計以可重置合成傳輸線取代原本開關二極體之功能,使天線可於 1 × 2 陣列、2 × 4 陣列、3 × 6 陣列間切換,並可控制其二維波束寬及天線增益。
再者,針對此可重置合成傳輸線更進一步之探討,可將其合成傳輸線等效為一位元相移器,實現了「相位可重置」合成傳輸線。藉由解析該相位可重置合成傳輸線之設計原理,使其於切換相位狀態過程中,同步改變其電氣長度但仍保有良好之特徵阻抗匹配。吾人以此合成傳輸線之特性進一步整合於一平面天線以實現天線場型的相位可重置性。透過改變相位可重置合成傳輸線之相位,以控制相對應的控制天線輻射體之電流分佈,使天線之主波束能指向平面方位的四種不同角度。本天線設計具有低成本、平面架構與極低之直流功率損耗等優勢,具有應用於下一世代行動通訊系統之商用潛力。
最終,乃將前述之相位可重置合成傳輸線,成功應用於實現一款低成本、低複雜度,且具有良好波束控制性與寬廣掃描範圍之波束切換系統。本論文提出之系統以標準4  4 之巴特勒矩陣為基礎,並捨棄傳統昂貴之商用相移器,改為串接使用前述相位可重置合成傳輸線,以用增加各輸出埠之漸進相位移的可控制性。本系統以1 W之直流功耗,可將主波束之切換方向擴增為16個,其等效半功率波束寬為118o,掃描範圍之增益為7至10 dBi,且波束寬內之增益漣波均小於0.9 dB,整體系統之P1dB, in 可達 31.2 dBm。
最終,由此相位可重置合成傳輸線之持續調變特性,成功設計一款創新之可重置功率分波器。此分波器的架構由兩個混合正交耦合器組成,並將兩組相位可重置合成傳輸線插入其中。藉由調整相位可重置合成傳輸線之相位差,此可重置功率分波器可任意調整其功率分配比由-39至29 dB並同時於輸出之兩埠之間有穩定的相位響應(0o and 180o)。吾人相信此設計所提供之功率分配比可調範圍為目前所有公開文獻中不曾達到的


Novel reconfigurable synthesized transmission lines, whose transmission characteristics are controlled by varactor diodes, are presented in this dissertation. By utilizing newly developed synthesized lines, a number of reconfigurable antenna and phased array designs were fulfilled and validated at a given frequency with very low dc-power consumption.
First of all, the varactor diode has been successfully integrated into a synthesized transmission line to enable the reconfigurability as an on/off RF switch. It is capable of serving as a segment of low-loss transmission line in one state, but turning to open-circuited in the other state for signal blockage. A planar microstrip series-fed slot array has been proposed for street-level base station applications by using the newly developed reconfigurable synthesized line (abbreviated as RSTL). By incorporating the RSTLs into the feed network of the slot array, the number of radiating elements can be controlled in a variety of fashions. The radiation beamwidth, as well as antenna gain, can hence be switched two dimensionally with a dc-power consumption of less than 1 W.
The design concept of the reconfigurable synthesized line is further studied and extended as a 1-bit phase shifter (hereafter named as phase reconfigurable synthesized transmission line (PRSTL)). The proposed PRSTL is able to switch its electrical length between two states while keeping the characteristic impedance of the line unaltered during the reconfiguration. It is then integrated into the feed network of the planar antenna to enable the pattern reconfigurability. By changing the phase of PRSTLs, the current distribution on the radiator is controlled accordingly; the antenna main radiation is hence pointed at four different angles in the azimuth plane. With the advantages of planar form, low cost, and extremely low dc power consumption, the proposed antenna can find applications in smart mobile communication systems.
Thirdly, also with the help of the newly developed PRSTL, a low-cost, low complexity beam-switching system with enhanced beam controllability and widen coverage has been proposed and demonstrated. Instead of using the high-cost commercial digital phase shifter, the PRSTLs are cascaded and attached to the output of a standard 4  4 Butler matrix to further switch the progressive phase shift of the beam-switching array. With the dc-power consumption less than 1 W, the new beam-switching system can provide up to 16 output beams with an equivalent half-power beamwidth of 118o and the gain varying from 7 to 10 dBi within the coverage. The gain ripple is less than 0.9 dB and the output P1dB reaches up 29.5 dBm.
Finally, the continuously tuning characteristic of the PRSTL is also carefully investigated and applied to design a new planar reconfigurable directional coupler. The topology of the proposed coupler consists of two hybrid quadrature couplers and two PRSTLs inserted in between. By tuning the phase difference between the two PRSTLs, the proposed directional coupler can arbitrary tuning the power division ratio from -39 to 29 dB with constant phase responses (0o and 180o) between two output ports. It is believed that tunable range of the power division ratio of the proposed coupler is the largest in the open literature.

摘要 i Abstract v Acknowledgement vii Contents viii List of Figures xi List of Tables xv Chapter 1 Introduction 1 1.1. Motivation 1 1.2. Literature Survey 2 1.3. Contribution 5 1.4. Chapter Outline 7 Chapter 2 Introduction to Synthesized Transmission Lines 10 2.1. Introduction 10 2.2. Transmission Line: Lumped Circuit Model and Propagation Characteristic 10 2.3. Synthesized Transmission Line 13 2.3.1. Periodic Synthesized Transmission Line 13 2.3.2. Non-periodic Synthesized Transmission Line 15 2.3.3. Line Parameters Extractions 17 2.4. Lumped and Quasi-lumped Approaches 18 2.4.1. Right-handed Structure 18 2.4.2. Left-handed Structure 19 2.5. Reconfigurable Synthesized Transmission Line: Possibility and Strategy 22 2.6. Summary 23 Chapter 3 Reconfiguration Synthesized Transmission Line and Its Application to a Beamwidth Switchable Planar Microstrip Series-fed Slot Array 24 3.1. Introduction 24 3.2. Design Principle of the Planar Slot Array 25 3.2.1. Basic Principle 25 3.2.2. Beamwidth Switchable Planar Series-fed Array 26 3.3. Design of Reconfigurable Synthesized Transmission Line 28 3.3.1. Synthesis Equations 28 3.3.2. Fabrication and Experimental Validation 32 3.4. Beamwidth Switchable Planar Series-fed Slot Array 37 3.5. Summary 45 Chapter 4 Planar Pattern Switchable Antenna using Phase Reconfigurable Synthesized Transmission Line 46 4.1. Introduction 46 4.2. Antenna Radiation Mechanism 47 4.3. Phase Reconfigurable Synthesized Transmission Line 51 4.3.1. Synthesis Equations 51 4.3.2. Fabrication and Experimental Validation of the PRSTL 54 4.3.3. Feed Network 57 4.4. Planar Pattern Switchable Antenna 59 4.5. Summary 64 Chapter 5 An Extended 4  4 Butler Matrix with Enhanced Beam Controllability and Widened Coverage using Phase Reconfigurable Synthesized Line 65 5.1. Introduction 65 5.2. Design Principle of Extended Butler Matrix 66 5.3. Design of Phase Reconfigurable Synthesized Line 69 5.3.1. Design Requirements 69 5.3.2. Design Examples of PRSTLs 71 5.3.3. Design of PSLines 76 5.4. Extended Butler Matrix 4  4 Butler Matrix 79 5.4.1. Layout and Circuit Responses 79 5.4.2. Radiation Characteristic 82 5.4.3. Power Handling Capability 89 5.5. Summary 90 Chapter 6 Planar Tunable Directional Coupler with Very Large Tuning Range of Power Division Ratio 92 6.1. Introduction 92 6.2. Operating Principle 93 6.3. Continuously Tuning Characteristic of PRSTL 98 6.3.1. Synthesis Equations 98 6.3.2. Design Examples 101 6.4. Planar Tunable directional Coupler 103 6.5. Summary 110 Chapter 7 Conclusion 111 7.1. Summary 111 7.2. Future Works 113 References 116 Publication Lists 127 Appendix 129

[1] H. V. Cottony, “Wide-frequency-band radar array antenna system with suppressed grating lobes,” IEEE Trans. Antennas Propag., vol. 18, no. 6, pp. 774-779, Nov. 1970.
[2] R. Pokuls, J. Uher, and D. M. Pozar, “Microstrip antennas for SAR applications,” IEEE Trans. Antennas Propag., vol. 46, no. 9, pp. 1289-1296, Nov. 1998.
[3] W. Wang, J. Jin, J. G. Lu, and S. S. Zhong, “Waveguide slotted antenna array with broadband, dual-polarization and low cross-polarization for X-band SAR applications,” in Proc. IEEE Int. Radar Conf., 2005, pp. 653-656.
[4] S. O. Al-Jazzar, H. J. Strangeways, and D. C. McLernon, “2-D angle of arrival estimation using a one-dimensional antenna array,” in Proc. European Signal Process. Conf., 2014, pp. 1905-1909.
[5] X. Wang, F. Gao, and Q. Liu, “Design of antenna array used as smart antenna for TD-SCDMA systems,” in Proc. IEEE Int. Conf. Commun. Circuits Syst., 2004, pp. 176-180.
[6] M. Moghaddam, Y. Rahmat-Samii, P. Partridge, L. Van Nieuwstadt, J. Vitaz, M. Haynes, J. Huang, and V. Cable, “Dual polarized UHF/VHF honeycomb stacked-patch feed array for a large-aperture space-borne radar antenna,” in Proc. IEEE Aerosp. Conf., 2007, pp. 1-10.
[7] J. F. Frigon and B. Daneshrad, “Field measurements of an indoor high-speed QAM wireless system using decision feedback equalization and smart antenna array” IEEE Trans. Wireless Commun., vol. 1, no. 1, pp. 134-144, Jan. 2002.
[8] S. S. Jeon, Y. Wang, Y. Qian, and T. Itoh, “A novel smart antenna system implementation for broad-band wireless communications,” IEEE Trans. Antennas Propag., vol. 50, no. 5, pp. 600-606, May 2002..
[9] H. H. Luh, “Variable beamwidth and zoom contour beam antenna systems,” U.S. Patent 6 414 646, July 2, 2002.
[10] A. D. Olver and J. U. I. Syed, “Variable beamwidth reflector antenna by feed defocusing,” IEE Proc. Microw. Antennas Propag., vol. 142, no. 5, pp. 394, Oct. 1995.
[11] U. O. Sterr, A. D. Olver, and P. J. B. Clarricoats, “Variable beamwidth corner reflector antenna,” Electron. Lett., vol. 34, no. 11, pp. 1050-1051, May 1998.
[12] J. T. Bernhard, E. Kiely, and G. Washington, “A smart mechanically actuated two-layer electromagnetically coupled microstrip antenna with variable frequency, bandwidth, and antenna gain,” IEEE Trans. Antennas Propag., vol. 49, no. 4, pp. 597-601, April 2001.
[13] A. Edalati and T. A. Denidni, “A new configurable beamwidth antenna using cylindrical electromagnetic band gap,” in IEEE Int. Symp. Antennas Propag. Dig., 2007, pp. 5215-5218.
[14] M. Jusoh, M. Faizal, M. F. Malek, M. R. Kamarudin, and M. R. Hamid, “A reconfigurable beam shape patch array antenna (RBS-PA) for WiMAX and WiFi applications,” in Proc. IEEE Asia-Pacific Symp. Electromagn. Compat., 2012, pp. 237-240.
[15] K. W. Lee, R. G. Rojas, and N. Surittikul, “A pattern-reconfigurable microstrip antenna element,” Microw. Optical Technol. Lett., vol. 48, no. 6, pp. 1117–1119, June 2006.
[16] M. T. Ali, T. A. Rahman, M. R. Kamarudin, and M. N. M. Tan, “Reconfigurable linear array antenna with beam shaping at 5.8GHz,” in Proc. IEEE Asia-Pacific Microw. Conf., 2008.
[17] Y. You, J. M. Rigelsford, K. L. Ford, and T. O'Farrell, “A dynamic basestation antenna with reconfigurable azimuth beamwidth,” in Proc. IEEE European Conf. on Antennas Propag., 2014, pp.1889-1892.
[18] A. Khidre, F. Yang, and A. Z. Elsherbeni, “Reconfigurable microstrip antenna with tunable radiation beamwidth,” in IEEE Int. Symp. Antennas Propag. Dig., 2013, pp. 1444-1445.
[19] L. Ge and K. M. Luk, “Linearly polarized and dual-polarized magneto-electric dipole antennas with reconfigurable beamwidth in the H-plane,” IEEE Trans. Antennas Propag., vol. 64, no. 2, pp.423-431, Feb. 2016.
[20] T. Debogović, J. Bartolić, and J. Perruisseau-Carrier, “Dual-polarized partially reflective surface antenna with MEMS-based beamwidth reconfiguration,” IEEE Trans. Antennas Propag., vol. 62, no. 1, pp. 228-236, Jan. 2014.
[21] S. Yong and J. T. Bernhard, “Reconfigurable null scanning antenna with three dimensional null steer,” IEEE Trans. Antennas Propag., vol. 61, no. 3, pp. 1063-1070, Mar. 2013.
[22] S. V. S. Nair and M. J. Ammann, “Reconfigurable antenna with elevation and azimuth beam switching,” IEEE Antennas Wireless Propag. Lett., vol. 9, pp. 367-370, 2010.
[23] V. T. Nguyen and C. W. Jung, “Radiation-pattern reconfigurable antenna for medical implants in MedRadio band,” IEEE Antennas Wireless Propag. Lett., vol. 15, pp. 106-109, 2016.
[24] W. Lin, H. Wong, and R. W. Ziolkowski, “Wideband pattern-reconfigurable antenna with switchable broadside and conical beams,” IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 2638-2641, 2017.
[25] M. Jusoh, T. Sabapathy, M. F. Jamlos, and M. R. Kamarudin, “Reconfigurable four-parasitic-elements patch antenna for high-gain beam switching application,” IEEE Antennas Wireless Propag. Lett., vol. 13, pp. 79-82, 2014.
[26] J. Ren, X. Yang, J. Yin, and Y. Yin, “A novel antenna with reconfigurable patterns using H-shaped structures,” IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 915-918, Dec. 2015.
[27] X. Ding and B. Z. Wang, “A novel wideband antenna with reconfigurable broadside and end-fire patterns,” IEEE Antennas Wireless Propag. Lett., vol. 12, pp. 995-998, 2013.
[28] N. Nguyen-Trong, L. Hall, and C. Fumeaux, “A frequency- and pattern-reconfigurable center-shorted microstrip antenna,” IEEE Antennas Wireless Propag. Lett., vol. 15, pp. 1955-1958, 2016.
[29] A. Narbudowicz, M. J. Ammann, and D. Heberling, “Switchless reconfigurable antenna with 360° steering,” IEEE Antennas Wireless Propag. Lett., vol. 15, pp. 1689-1692, 2016.
[30] J. Blass, “The multidirectional antenna: A new approach to stacked beams,” in 1958 IRE National Convention Rec., pp. 48-50.
[31] S. Mosca, F. Bilotti, A. Toscano, and L. Vegni, “A novel design method for Blass matrix beam-forming networks,” IEEE Trans. Antennas Propag., vol. 50, no. 2, pp. 225-232, Feb. 2002.
[32] P. Chen, W. Hong, Z. Kuai, and J. Xu, “A double layer substrate integrated waveguide Blass matrix for beamforming applications,” IEEE Microw. Wireless Comp. Lett., vol. 19, no. 6, pp. 374-376, Jun. 2009.
[33] J. Nolen, “Synthesis of multiple beam networks for arbitrary illuminations,” Ph.D. dissertation, The Johns Hopkins Univ., Baltimore, MD, 1965.
[34] N. J. G. Fonseca, “Printed S-band 4  4 Nolen matrix for multiple beam antenna applications,” IEEE Trans. Antennas Propag., vol. 57, no. 6, pp. 1673–1678, Jun. 2009.
[35] T. Djerafi, N. J. G. Fonseca, and K. Wu, “Broadband substrate integrated waveguide 4  4 Nolen matrix based on coupler delay compensation,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 7, pp. 1740-1745, July 2011.
[36] J. Butler and R. Lowe, “Beam forming matrix simplifies design of electronically scanned antennas,” Electron. Design, vol. 9, pp. 170–173, April 1961.
[37] C.-W. Wang, T.-G. Ma, and C.-F. Yang, “A new planar artificial transmission line and its applications to miniaturized Butler matrix,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 12, pp. 2792-2801, Dec. 2007.
[38] T. H. Lin, S. K. Hsu, and T. L. Wu, “Bandwidth enhancement of 4  4 Butler matrix using broadband forward-wave directional coupler and phase difference compensation,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 12, pp. 4099-4109, Dec. 2013.
[39] S. Karamzadeh, V. Rafii, M. Kartal, and B. S. Virdee, “Compact and broadband 4  4 SIW Butler matrix with phase and magnitude error reduction,” IEEE Microw. Wireless Comp. Lett., vol. 25, no. 12, pp. 772-774, Dec. 2015.
[40] Y. S. Lin and J. H. Lee, “Miniature Butler matrix design using glass-based thin-film integrated passive device technology for 2.5-GHz applications,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 7, pp. 2594-2602, July 2013.
[41] M. Elkhouly, Y. Mao, C. Meliani, J. C. Scheytt, and F. Ellinger, “A G-band four-element Butler matrix in 0.13 µm SiGe BiCMOS technology,” IEEE J. Solid-State Circuits, vol. 49, no. 9, pp. 1916-1926, Sept. 2014.
[42] Q. L. Yang, Y. L. Ban, J. W. Lian, Z. F. Yu, and B. Wu, “SIW Butler matrix with modified hybrid coupler for slot antenna array,” IEEE Access, vol. 4, pp. 9561-9569, 2016.
[43] K. Ding, F. He, X. Ying, and J. Guan, “A compact 8 × 8 Butler matrix based on double-layer structure,” in IEEE Int. Symp. Microw. Antenna Propag. EMC Techn., 2013, pp. 650-653.
[44] G. Tudosie, R. Vahldieck, and A. Lu, “A novel modularized folded highly compact LTCC Butler matrix,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., 2008, pp. 691-694.
[45] T. Y. Chin, J. C. Wu, S. F. Chang, and C. C. Chang, “A V-Band 8  8 CMOS Butler matrix MMIC,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 12, pp. 3538-3546, Dec. 2010.
[46] B. Cetinoneri, Y. A. Atesal, and G. M. Rebeiz, “An 8  8 Butler Matrix in 0.13-m CMOS for 5–6-GHz multibeam applications,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 2, pp. 295-301, Feb. 2011.
[47] B. Palacin, K. Sharshavina, K. Nguyen, and N. Capet, “An 8 × 8 Butler matrix for generation of waves carrying Orbital Angular Momentum (OAM),” in Proc. IEEE European Conf. on Antennas Propag., 2014, pp.2814-2818.
[48] K. Wincza, S. Gruszczynski, and K. Sachse, “Broadband planar fully integrated 8  8 Butler matrix using coupled-line directional couplers,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 10, pp. 2441-2446, Oct. 2011.
[49] C. H. Chen, X. P. Zhang, and J. Xu, “Implementation of a low-loss wide-band flat-topped beam-forming network based on butler matrix,” in Proc. Asia-Pacific Microw. Conf., 20015, pp. 1-3.
[50] C. C. Chang, R. H. Lee, and T. Y. Shih, “Design of a beam switching/steering Butler matrix for phased array system,” IEEE Trans. Antenna Propag., vol. 58, no. 2, pp. 367-374, Feb. 2010.
[51] T. Y. Chin, S. F. Chang, J. C. Wu, and C. C. Chang, “A 25-GHz compact low-power phased-array receiver with continuous beam steering in CMOS technology,” IEEE J. Solid-State Circuits, vol. 45, no. 11, pp. 2273-2282, Nov. 2010.
[52] O. Kobayashi, T. Ohira, and H.Ogawa, “A novel Butler matrix based beam forming network architecture for multiple antenna beam steering,” in Proc. IEEE Int. Symp. Antenna Propag., 1996, pp. 161-164.
[53] M. Koubeissi, C. Decroze, T. Monediere, and B. Jecko “A new method to design a Butler matrix with broadside beam: Application to a multibeam antenna,” Microw. Optical Techn. Lett., vol. 48, no. 1, pp. 35-40, Jan. 2006.
[54] K. Wincza and S. Gruszczynski, “Broadband integrated 8  8 Butler matrix utilizing quadrature couplers and Schiffman phase shifters for multibeam antennas with broadside beam,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 8, pp. 2596-2604, Aug. 2016.
[55] S. Y. Zheng, W. S. Chan, and Y. S. Wong, “Reconfigurable RF quadrature patch hybrid coupler,” IEEE Trans. Ind. Electron., vol. 60, no. 8, pp. 3349-3359, Aug. 2013.
[56] J. Sun, C. Li, Y. Geng, and P. Wang, “A highly reconfigurable low-power CMOS directional coupler,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 9, pp. 2815-2822, Sept. 2012.
[57] K. K. M. Cheng and M. C. J. Chik, “A frequency-compensated rat-race coupler with wide bandwidth and tunable power dividing ratio,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 8, pp. 2841-2847, Aug. 2013.
[58] K. K. M. Cheng and S. Yeung, “A novel rat-race coupler with tunable power dividing ratio, ideal port isolation, and return loss performance,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 1, pp. 55-60, Jan. 2013.
[59] F. Lin, “A planar balanced quadrature coupler with tunable power-dividing ratio,” IEEE Trans. Ind. Electron., vol. 65, no. 8, pp. 6515-6526, Aug. 2018.
[60] M. Zhou, J. Shao, B. Arigong, H. Ren, R. Zhou, and H. Zhang, “A varactor based 90o directional coupler with tunable coupling ratios and reconfigurable responses,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 3, pp. 416-421, March 2014.
[61] P. L. Chi and T. C. Hsu, “Highly reconfigurable quadrature coupler with ideal impedance matching and port isolation,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 8, pp. 2930-2941, Aug. 2017.
[62] W. Zhang, Y. Liu, Y. Wu, J. Shen, S. Li, C. Yu, and J. Gao, “A novel planar structure for implementing power divider or balun with variable power division,” Progress In Electromagn. Research C, Vol. 48, 111-123, 2014.
[63] Y. Wu, L. Jiao, B. Zhang, and Y. Liu, “A new concept for power-dividing networks with controllable power-division ratios controlled by phase shifters,” in Proc. IEEE IMWS-AMP., Chengdu, 2016, pp. 1-4.
[64] Y. Wu, L. Jiao, B. Zhang, and Y. Liu, “A new coupler structure with phase-controlled power divisions of extremely-wide tunable ranges and arbitrary phase differences,” IEEE Access., vol. 6, pp. 10121-10130, 2018.
[65] T.-G. Ma, C.-W. Wang, C.-H. Lai, and Y.-C. Tseng, Synthesized transmission lines: design, circuit implementation, and phased array applications, 1st ed. Singapore: Wiley, 2017, pp. 27-29.
[66] R. E. Collin, Foundations for Microwave Engineering, 2nd ed. New York: McGraw-Hill, 1992.
[67] D. M. Pozar, Microwave Engineering, 4th ed. New York: Wiley, 2011.
[68] N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations, 1st ed. New York: Wiley, 2006.
[69] C. C. Wang, C. H. Lai and T. G. Ma, “Miniaturized Coupled-Line Couplers Using Uniplanar Synthesized Coplanar Waveguides,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 8, pp. 2266-2276, Aug. 2010.
[70] L. Chang and T. G. Ma, “Dual-mode branch-line/rat-race coupler using composite right-/left-handed lines,” IEEE Microw. Wireless Comp. Lett., vol. 27, no. 5, pp. 449-451, May 2017.
[71] J. H. Choi and T. Itoh, “Dual-band composite right/left-handed (CRLH) phased-array antenna,” IEEE Antennas Wireless Propag. Lett., vol. 11, pp. 732-735, 2012.
[72] M. R. M. Hashemi and T. Itoh, “Dual-band composite right/left-handed metamaterial concept,” IEEE Microw. Wireless Comp. Lett., vol. 22, no. 5, pp. 248-250, May 2012.
[73] C. H. Lai, G. T. Zhou, and T. G. Ma, “On-chip miniaturized diplexer using jointed dual-mode right-/left-handed synthesized coplanar waveguides on GIPD process,” IEEE Microw. Wireless Comp. Lett., vol. 24, no. 4, pp. 245-247, April 2014.
[74] C. H. Lai, C. Y. Shiau, and T. G. Ma, “Microwave three-channel selector using tri-mode synthesized transmission lines,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 10, pp. 3529-3540, Oct. 2013.
[75] J. Y. Zou, C. H. Wu and T. G. Ma, “Heterogeneous integrated beam-switching/ retrodirective array using synthesized transmission lines,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 8, pp. 3128-3139, Aug. 2013.
[76] D. M. Pozar, “A reciprocity method of analysis for printed slot and slot-coupled microstrip antennas,” IEEE Trans. Antennas Propag., vol. 34, no. 12, pp. 1439-1446, Dec. 1986.
[77] B. N. Das and K. K. Joshi, “Impedance of a radiating slot in the ground plane of a microstripline,” IEEE Trans. Antennas Propag., vol. 30, no. 5, pp. 922-926, Sep. 1982.
[78] Datasheet of Skywork SMV1405 [Online]. Available: http://www.skyworksinc.com/Product/552/SMV1405_Series
[79] J. Everard and Liang Zhou, “Nonlinear effects in varactor-tuned resonators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 53, no. 5, pp. 853-861, May 2006.
[80] N. K. Das and D. M. Pozar, “Analysis and design of series-fed arrays of printed-dipoles proximity-coupled to a perpendicular microstripline,” IEEE Trans. Antennas Propag., vol. 37, no. 4, pp. 435-444, Apr. 1989.
[81] S. R. Rengarajan, L. G. Josefsson, and R. S. Elliott, “Waveguide-fed slot antennas and arrays: a review,” Electromagn., vol. 19, no. 1, pp. 3- 22, Jan. 1999.
[82] S. C. Chen, Y. S. Wang, and S. J. Chung, “A decoupling technique for increasing the port isolation between two strongly coupled antennas,” IEEE Trans. Antennas Propag., vol. 56, no. 12, pp. 3650-3658, Dec. 2008.
[83] H. Kim, A. B. Kozyrev, A. Karbassi, and D. W. van der Weide, “Linear tunable phase shifter using a left-handed transmission line,” IEEE Microw. Wireless Comp. Lett., vol. 15, no. 5, pp. 366-368, May 2005.
[84] C. Damm, M. Schussler, M. Oertel, and R. Jakoby, “Compact tunable periodically LC loaded microstrip line for phase shifting applications,” in Proc. IEEE MTT-S Int. Microw. Symp. Dig., 2005, pp. 2003-2006.
[85] D. Kuylenstierna, A. Vorobiev, P. Linner, and S. Gevorgian, “Composite right/left handed transmission line phase shifter using ferroelectric varactors,” IEEE Microw. Wireless Comp. Lett., vol. 16, no. 4, pp. 167-169, April 2006.
[86] P. Li et al., “A novel 360o continuously tunable phase shifter based on varactor-loaded CRLH transmission line at exact 2.4 GHz”, in Proc. IEEE Int. Conf. Electron. Inform. Commun. Technol., 2016, pp. 583-585.
[87] Datasheet of Skywork SMV2020 [Online]. Available: http://www.skyworksinc.com/Product/792/SMV2020-079LF.
[88] M. Mcghay and D. Afendras “Circuit for coupling radio receiver and radio transmitter to a common antenna for duplex operation,” U.S. Patent 3733608A, May 15, 1973.
[89] H. N. Chu, Ting Heish, and T. G. Ma, “Reconfigurable dual-mode integrated beam-steering array,” to be presented in. Proc. IEEE MTT-S Int. Microw. Symp. Dig., Philadelphia PA, 2018.
[90] F. Ellinger, H. Jäckel, and W. Bächtold, “Varactor-loaded transmission-line phase shifter at C-band using lumped elements,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 4, pp. 1135–1140, Apr. 2003.
[91] M. A. Y. Abdalla, K. Phang, and G. V. Eleftheriades, “A 0.13-μm CMOS phase shifter using tunable positive/negative refractive index transmission lines,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 12, pp. 705–707, Dec. 2006.
[92] D. Kuylenstierna, A. Vorobiev, P. Linnér, and S. Gevorgian, “Composite right/left handed transmission line phase shifter using ferroelectric varactors,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 4, pp. 167–169, Apr. 2006.
[93] J.-C. Wu, T.-Y. Chin, S.-F. Chang, and C.-C. Chang, “2.45-GHz CMOS reflection-type phase-shifter MMICs with minimal loss variation over quadrants of phase-shift range,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 10, pp. 2180–2189, Oct. 2008.
[94] C.-S. Lin, S.-F. Chang, and W.-C. Hsiao, “A Full-360° reflection-type phase shifter with constant insertion loss,” IEEE Trans. Microw. Theory Tech., vol. 18, no. 2, pp. 106–108, Feb. 2008.
[95] W. J. Liu, and S. Y. Zheng, Y. M. Pei, Y. X. Li, and Y. L. Long, “A wideband tunable reflection-type phase shifter with wide relative phase shift,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. PP, no. 99, Jan. 2017.
[96] S. Gong, H. Shen, and N. S. Barker, “A 60-GHz 2-bit switched-line phase shifter using SP4T RF-MEMS switches,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 4, pp. 894–900, Apr. 2011.
[97] K. Maruhashi, H. Mizutani, and K. Ohata, “Design and performance of a Ka-band monolithic phase shifter utilizing nonresonant FET switches,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 8, pp. 1313-1317, Aug. 2000.
[98] N. Kingsley and J. Papapolymerou, “Organic ‘wafer-scale’ packaged miniature 4-bit RF MEMS phase shifter,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 3, pp. 1229–1236, Mar. 2006.
[99] B.-W. Min and G. M. Rebeiz, “Single-ended and differential Ka-band BiCMOS phased array front-ends,” IEEE J. Solid-State Circuits, vol. 43, no. 10, pp. 2239–2250, Oct. 2008.
[100] H.-S. Lee and B.-W. Min, “W-band CMOS 4-bit phase shifter for high power and phase compression points,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 62, no. 1, pp. 1–5, Jan. 2015.
[101] G.-S. Shin et al., “Low insertion loss, compact 4-bit phase shifter in 65 nm CMOS for 5G applications,” IEEE Microw. Wireless Compon. Lett., vol. 26, no. 1, pp. 37–39, Jan. 2016.
[102] S. J. Kim and N. H. Myung, “A new active phase shifter using a vector sum method,” IEEE Microw. Guided Wave Lett., vol. 10, no. 6, pp. 233–235, Jun. 2000.

QR CODE