簡易檢索 / 詳目顯示

研究生: 黃錦松
Chin-Sung Huang
論文名稱: 跨海微波無線電鏈路分析與量測
Over Water Microwave Radio Link Analysis and Measurement
指導教授: 黃進芳
Jhin-Fang Huang
口試委員: 徐敬文
none
張道治
none
陳國龍
none
伍長裕
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 112
中文關鍵詞: 跨海微波鏈路多重路徑衰落海平面反射係數適應性等化均衡器
外文關鍵詞: microwave radio link, sea reflection coefficient, multipath fading, time domain adaptive equalization
相關次數: 點閱:277下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文中探討長距離跨海微波通信之鏈路分析及量測需求以實現高容量(STM-1)、高速率(171Mbps)之傳輸設計。海平面反射係數分析、High-Gain Pattern產生及K值變化對接收信號強度之影響分析,使應用於微波通徑之高增益指向性天線的位置與天線間距達到最佳位置,俾使接收機獲得非相干之接收信號強度,以對抗反射波之衰落效應。
天線及導波管系統品質之良窳影響長距離跨海微波通信性能甚鉅。本文將提出如何在維持微波鏈路為 規範下,天線及導波管系統Return Loss之量測需求,以避免因天線及導波管系統之非連續性效應或呈現非線性響應而導致接收端之嚴重ISI或同(鄰)頻干擾。另有關干擾所造成之接收靈敏度衰落分析亦將本文中討論之。
由測量數據可知,提升發射機之輸出功率並不能使多重路徑的衰落效應改善,而僅使用Slope等化均衡器或抗Notch 濾波器等在頻域上的作為亦無法有效對抗多重路徑衰落,惟作用於時域上的適應性等化均衡器(ATDE)可提供明顯有效的改善。本文將討論ATDE在微波通信上之操作模式及其在不同等級之效率評估,以作為計算對抗多重路衰落效應之能力以及微波鏈路可靠度分析之預估。


In this thesis, one long-haul over the sea surface microwave radio link is analyzed and the measurement requirement is proposed, such that a high capacity (STM-1) and high speed (171Mbps) transmission design can be realized. The analysis of sea reflection coefficient, the obtained high-gain pattern and the analysis between the K-value change and the receiver signal level fluctuation are all the factors to decide the optimal antenna height and spacing. Therefore, the uncorrelated signals can be obtained between the main and diversity antenna and the simultaneous cancellations of signals can be avoided.
The quality of installation for Antenna/Waveguide system plays a very important role since it will generate echoes to result in the ISI appearing on receiver input if there is any impendence mismatch occurred in the conjunction. The measurement requirement derived from radio echo requirement for satisfying specification is proposed. In addition, the interference to cause receive sensitivity degradation is also discussed in this thesis.
The measurement records show that the increasing output power will not alleviate the multipath fading effect suffered by receiver. The use of diversity and time domain adaptive equalization (TDE) have been found to greatly mitigate the effects of dispersive fading, allowing performance objectives to be met for digital radio. The prediction models for multipath channels show that the performance of equalization technology has a great impact on the result of outage probability.

CHAPTER 1 INTRODUCTION 8 1.1 MOTIVATION 8 1.2 OUTLINE OF THE THESIS 10 CHAPTER 2 CHARACTERISTIC ANALYSIS OF THE SEA REFLECTIVE LINK 12 2.1 REFLECTIONS 12 2.2 FRESNEL REFLECTION COEFFICIENT ANALYSIS 13 2.3 PLANE SURFACE REFLECTION 17 2.3.1 RECEIVED POWER ANALYSIS FOR PLANE SURFACE 17 2.3.2 HIGH-GAIN PATTERN 20 2.4 SPHERICAL SURFACE REFLECTION 22 2.4.1 SPECULAR POINT CALCULATION 22 2.4.2 RECEIVED POWER ANALYSIS FOR SPHERICAL SURFACE 26 2.4.3 ANTENNA HEIGHT SELECTION 29 2.5 RECEIVED POWER DISTRIBUTION VERSUS K-VALUE 33 2.5.1 K-VALUE VERSUS DN/DH 33 2.5.2 RECEIVED POWER LEVEL VERSUS K 35 CHAPTER 3 INTERFERENCE ANALYSIS AND CALCULATION 39 3.1 INTERFERENCE TYPES 39 3.2 INTERFERING SIGNAL’S IMPACT ON RECEIVER THRESHOLD 40 3.3 INTERFERENCE ANALYSIS BETWEEN HOPS 44 3.4 Interference Calculation 47 3.5 ANALYSIS OF SPIKE EMISSION 52 CHAPTER 4 ANTENNA/WAVEGUIDE RETURN LOSS REQUIREMENT FOR MICROWAVE RADIO SYSTEMS 54 4.1 THE MEASUREMENT PLOT OF RETURN LOSS 54 4.2 THE ANTENNA/WAVEGUIDE SYSTEM ECHOES ANALYSIS 59 4.3 THE ANTENNA/WAVEGUIDE RETURN LOSS REQUIREMENT 62 4.3.1 RADIO ECHO REQUIREMENT 62 4.3.2 WAVEGUIDE RETURN LOSS REQUIREMENT 63 CHAPTER 5 MICROWAVE RADIO LINK OUTAGE PREDICTION 69 5.1 MULTIPATH PROPAGATION RELIABILITY 69 5.2 FADE MARGIN 70 5.3 RELIABILITY MODELS INTRODUCTION 72 5.3.1 OLSEN- SEGAL MODEL 72 5.3.2 VIGANTS-BARNETT MODEL 75 5.3.3 K.Q FACTOR MODEL 76 5.4 RELIABILITY CALCULATION OF SEA REFLECTIVE LINK 76 5.4.1 METHODS COMPARISON FOR OLSEN-SEGAL MODEL 77 5.4.2 CALCULATION RESULT AND COMPARISON 78 5.5 DIVERSITY IMPROVEMENT 80 5.5.1 SPACE DIVERSITY IMPROVEMENT 81 5.5.2 FREQUENCY DIVERSITY IMPROVEMENT 83 5.5.3 QUADRUPLE DIVERSITY IMPROVEMENT 84 CHAPTER 6 COUNTERMEASURES FOR MULTIPATH MICROWAVE LINK 86 6.1 MULTIPATH COUNTERMEASURE TECHNIQUES 86 6.1.1 REDUCING THE EFFECTS OF DISPERSIVE FADING 86 6.1.2 TECHNIQUES WITHOUT DIVERSITY 87 6.2 MULTIPATH PROPAGATION 88 6.2.1 DISPERSIVE NOTCH 88 6.2.2 DISPERSIVE CHANNEL MODEL 89 6.2.3 INTERSYMBOL INTERFERENCE PROPAGATION MECHANISMS 91 6.3 ATDE 92 6.3.1 ATDE PRINCIPAL OF OPERATION 92 6.3.2 TAP WEIGHTS REQUIREMENT 95 6.3.3 DETERMINATION OF TAP WEIGHT COEFFICIENT 96 6.3.3.1 OFFSET BINARY CODING 96 6.3.3.2 STATE SPLITTING BIT (SSBIT) 98 6.3.3.3 DETERMINATION OF AVERAGE COEFFICIENT 99 6.3.4 DYNAMIC TRACKING ABILITY OF THE ATDE 102 6.3.5 ATDE SNR IMPROVEMENT 103 CHAPTER 7 RESULTS OF LINK PERFORMANCE TEST 105 7.1 RECEIVE POWER LEVEL PLOTS 105 7.2 BIT ERROR RATE TEST 110 CHAPTER 8 CONCLUSIONS AND FUTURE WORK 114 REFERENCE 116

[1] K. C. Allen, R.H. OTT, E.J. Violette and R.H. Espeland, “Height-gain study for 23 km links at 9.6, 11.4, and 28.8 GHz,” IEEE Trans. Antennas Propagat., vol. AP-30, no. 4, July 1982.
[2] W.T. Barnett, “Multipath fading effects on digital radio,” IEEE Trans. Commun., vol. COM-27, pp. 1842-1848, Dec. 1979.
[3] A.J. Giger and W.T. Barnett, “Effects of multipath propagation on digital radio,” IEEE Trans. Commun., vol. COM-29, pp. 1345-1352., Sept. 1981.
[4] G. J. Foschini and J. Salz. “Digital communications over fading radio channels,” in Proc. IEEE 1983 Int. Conf Commun., Boston: MA, paper C8.1.
[5] Theodore S. Rappaport, “Wireless Communications Principles and Practice”, Upper Saddle River, New Jersey, Prentice Hall PTR, 2002.
[6] K. A. Norton, “The propagation of radio waves over the surface of the earth in the upper atmosphere Part I,” Proc. IRE, vol. 24, pp. 1367-1387, 8ct. 1936.
[7] K. A. Norton, “The propagation of radio waves over the surface of the earth in the upper atmosphere Part II,” Proc. IRE, vol. 25, pp. 1203-1236, 8ept. 1937.
[8] K. A. Norton, “The calculation of ground wave field intensity over a finitely conducting spherical earth,” Proc. IRE, vol. 29, pp. 623-639, Dec. 1941.
[9] Bullington, “Radio ropagation at frequencies above 30 megacycles,” Phoc. IRE vol. 35, pp. 1122-1136, Oct. 1947.
[10] O. R. Douglas, “Properties of Mobile Radio Propagation Above 400 Mhz” IEEE Transactions on Vehicular Technology, Vol. vt-23, No.4, November 1974.
[11] Heinz Karl, “The planning and engineering of radio-relay networks"
Radiolänk projektering workshop, 1988-09-13.
[12] Rod Walker, “Analysis and Correction of Echo Due to Mode Conversion in WC-281 Waveguide”, IEEE Transactions on Microwave Theory and Techniques, Vol. 43, No.3, March 1995.
[13] ITU-R P.530-8, “Propagation Data and Prediction Methods Required for the Design of Terrestrial Line-of-Sight Systems”, 1999.
[14] C.W. Lundgren and W.D. Rummler, ” Digital radio outage selective fading – observation vs. prediction from laboratory simulations,” Bell System Technical Journal, pp. 1073-1100, May-June, 1979.
[15] W.D. Rummler, “Characteristic of the effects of multipath dispersion on digital radios,” IEEE Globecom Proceedings, pp.1727-1732,1988.
[16] W.D. Rummler; R.P Coutts; M. Liniger, “ Multipath Fading Channel Models for Microwave Digital Radio”, IEEE Communication Magazine, Vol.24, No.11, November 1986.
[17] T. Tjelta, R. L. Olsen, and L. Martin, “Systematic development of new multivariable techniques for predicting the distribution of multipath fading on terrestrial microwave links,” IEEE Trans. Antennas Propagat., vol. 38, pp. 1650–1665, Oct. 1990.
[18] R. L. Olsen and T. Tjelta, “Worldwide techniques for predicting the multipath fading distribution on terrestrial L.O.S. links: Background and results of tests,” IEEE Trans. Antennas Propagat., vol. 47, pp. 157–170,Jan. 1999.
[19] R. L. Olsen and T. Tjelta, “Worldwide Techniques for Predicting the Multipath Fading Distribution on Terrestrial L.O.S. Links:Comparison With Regional Techniques” IEEE Trans. Antennas Propagat., vol. 51, No.1, Jan. 2003.
[20] ITU-R P.453-8, “The radio refractive index: its formula and refractivity data”, 2001.
[21] W.T. Barnett, “ Multipath propagation at 4, 6 and 11 Ghz ,” Bell System Technical Journal, Vol. 51, no. 2, pp.331-361, February 1972.
[22] A. Vigants, ”Space-diversity engineering,” Bell System Technical Journal, Vol. 54, no. 1, pp.103-142, January 1975.
[23] K. Morita, “Prediction of Rayleigh fading occurrence probability of line-of-sight microwave links,” Rev. Elec. Commun. Lab., vol. 18, pp. 810–821, Nov.-Dec. 1970.
[24] T. Ooi and K. Morita, “Estimation formula for Rayleigh fading and equivalent Rayleigh fading occurrence probabilities,” Rev. Elec. Commun. Lab., vol. 29, pp. 51–57, Jan.-Feb. 1981.
[25] A. Vigants, and M.V. Pursey, ”Transmission Unavailability of Frequency Diversity Protected Microwave FM Radio Systems caused by Multipth Fading, ” Bell System Technical Journal, October 1979.
[26] ITU-R P.530-10, “Propagation Data and Prediction Methods Required for the Design of Terrestrial Line-of-Sight Systems”, 2001.
[27] Curtis A. Siller, Jr., ” Multipath Propagation” IEEE Communication Magazine,” Vol.22, No.2, Februbary 1984.
[28] P. Balaban, V.P. Dewal, ” Statistical distribution of parameters in a variable delay two-ray propagation model,” AT&T Bell Laboratories Holmdel, NJ07733.
[29] W.D Rummler, ”A New Selective Fading Model: Application to Propagation Data,” Bell System Technical Journal, Vol. 58, no. 5, May-June 1979.
[30] Charles Henry Bianchi and Kondagunta Sivaprasad, “A Channel Model for Multipath Interference On Terrestrial Line-of-Sight Digital Radio,” IEEE Trans. Antennas Propagat., Vol. 46, No. 6, June 1998
[31] A. Leclert and P. Vandamme, “Decision feedback equalization of dispersive radio channels,” IEEE Trans. Commun., vol. COM-33, pp. 676-684, July 1985.
[32] James A. Hoffmeyer, “Measurement, Modeling, and Simulation of Digital LOS Microwave Channels with Application to Outage Prediction”, IEEE Transactions on Communications, Vol. 39, No. 9, September 1991.
[33] G. L. Fenderson, M. H. Meyers, and M. A. Skinner, “Recent advances in multipath propagation countermeasures for high-capacity digital radio systems,’’ in Proc. IEEE 1985 Int. Conf. Commun., Chicago, IL, paper 39.2.
[34] M. F. Gardina and A. Vigants, “Measured multipath dispersion of amplitude and delay at 6 GHz in a 30 MHz bandwidth,” in Proc. IEEE
1984 Int. Conf. Commun., Amsterdam. The Netherlands, paper 46.1, pp. 1433-1436.

無法下載圖示
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE