簡易檢索 / 詳目顯示

研究生: 羅仁捷
Jen-Chieh Lo
論文名稱: 甲烷固態氧化物燃料電池陽極陰極與鑭鉬氧電解質的匹配
Matching anode and cathode composites with the LAMOX electrolyte of a methane SOFC
指導教授: 蔡大翔
Dah-Shyang Tsai
口試委員: 韋文誠
Wen-Cheng Wei
徐錦志
Jiin-Jyh Shyu
吳溪煌
She-huang Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 105
中文關鍵詞: 鑭鉬氧化物固態電解質單電池測試臨場起始法
外文關鍵詞: LAMOX solid state electrolyte, single cell test, outside initialization
相關次數: 點閱:230下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    我們探討鑭鉬氧化物(LAMOX)做為固態氧化物燃料電池電解質之可行性,以此材料為電解質之燃料電池,目前可操作在中溫範圍單氣室條件下工作。LAMOX代表氧化物離子導體,基於母晶La2Mo2O9的系列化合物總稱,此系列化合物的離子導電率可媲美甚至高於摻雜氧化鈰、鎵酸鑭基系列氧化物離子導體。先前我們研究室之研究,已證實鑭鉬氧化物可運用於單氣室固態氧化物燃料電池,但先前所量得的功率甚低,僅190 mW cm-2,因此本研究努力聚焦於調整電極之熱膨脹係數,及改良製備程序,希望提升電池電功率密度表現。
    本研究中,採取兩種製備程序於陽極支撐材。其中之一以氧化鎳為基礎的製程,需要在電池工作之前做起始化(initialization);另一基於金屬鎳的製程,則需要特別處理,防止鎳在高溫處理步驟下再度氧化。
    在氧化鎳為基礎的製程方面,我們設計一臨場的方法起始化,電池組NiO+GDC/LDM/GDC/LSCF6482,其中GDC 代表Gd0.1Ce0.9O1.9, LDM 代表La1.8Dy0.2Mo2O9,LSCF6482 代表La0.6Sr0.4Co0.8Fe0.2O3。臨場起始法是利用,重組氣的還原能力在高溫下還原陽極的氧化鎳,此還原性的重組氣來至於部分氧化反應,作法採金屬鎳與GDC的複合圓錠浮貼在陽極表面,流入的甲烷將被部分氧化,產生一氧化碳和氫氣,促使還原反應發生於附近之陽極氧化鎳。我們將電池開環電位的上升,當作起始化的指標。實驗結果指出,陽極起始化所需時間隨鎳錠與陽極間距離增加而增加。在甲烷與空氣總流量(甲烷比氧氣為2:1) 350 sccm,且工作溫度為700oC條件下,此一製程所記錄最佳的電池電功率密度為282 mW cm-2。
    以金屬鎳為基礎的製程方面,首先,我們燒結(NiO+GDC)支撐材,然後在氫氣氣氛下還原。經還原後的支撐材,塗佈上LDM 電解質與 GDC 擴散層,在氮氣氣氛下燒結,之後將LSCF6482 陰極於氮氣保護下再次進行燒結。由於已還原之金屬鎳在燒結步驟中,不再進一步氧化,故電池於單氣室系統無須經起始化便可立即操作。在甲烷與空氣總流量(甲烷比氧氣為2:1) 350 sccm,且工作溫度為 700℃ 之條件下,此一製程記錄的最大電功密度值 365 mW/cm2。我們將較佳的電功密度值,歸因於金屬鎳於測試過程僅受較輕微之碳毒化損害。
      我們同時認知得知,電池表現之優劣,電解質與電極間之熱膨脹匹配性扮演關鍵性的角色。藉由梯度微結構釋放陰極之熱應力,是一個匹配的方法,我們在GDC阻障層位置,製作一 GDC 成分較高的電極層;而遠離 GDC 阻障層之陰極部份,則使用 GDC 含量較少之陰極。在陽極支撐材方面,其組成無梯度。我發現 GDC+NiO 之複合陽極中摻入 10 wt% LDM 擁有較佳之電功密度表現。
    關鍵字:鑭鉬氧化物固態電解質、單電池測試、臨場起始法


    ABSTRACT
    We exploit LAMOX as the electrolyte for solid fuel cell (SOFC) that operates at single chamber conditions in intermediate temperature range. LAMOX denotes the oxide ion conductor family based on its parent crystal La2Mo2O9, whose ion conductivity is comparable or higher than that of the dopod ceria or lanthanum strontium gallium magnesium oxide. In the previous study conducted in our research group, the feasibility of single chamber SOFC with LAMOX has been demonstrated, but the peak power density via fine tuning the thermal expansions of electrode materials and modifying the preparation steps.
    Two preparation procedures for the anode-supported stack are adopted in this study. The stack preparation procedure based on nickel oxide requires an initialization step prior to SOFC operation. The other stack preparation procedure based on nickel metal demands special precautions to prevent Ni from re-oxidation in high-temperature steps.
    In the procedure based on NiO, we devise an on-site method to initialize the NiO+GDC/LDM/GDC/LSCF6482 stack, in which GDC stands for Ce0.9Gd0.1O1.9, LDM La1.8Dy0.2Mo2O9, LSCF6482 La0.6Sr0.4Co0.8Fe0.2O3. The on-site initialization takes advantage of the reducing capability of syngas, produced through partial oxidation of method, a composite disk of nickel metal and GDC is attached above the anode, and the methane inflow is partially oxidized into CO and H2 which trigger the reduction of nearby anodic nickel oxide. The cell voltage upsurge serves as an inducator for the initialization. Our results indicate that the time required for initialization increases with the distance between anode and the composite disk. The highest peak power density recorded for the as-prepared cell is 282 mW cm-2 at 700oC in the CH4/air flow (CH4:O2=2:1) with a total flow rate 350 sccm.
    In the procedure based on nickel metal, we first sinter the porous support of NiO+GDC, then reduce it in hydrogen. The H2-reduced support is coated with the LDM electrolyte and the GDC diffusion layers, sintered in nitrogen atmosphere, then the LSCF6482 cathode in another N2 protected sintering. Since the reduced Ni metal is not further oxidized in the later sintering steps, the cell can be operated immediately at single chamber conditions without initialization. The highest peak power density recorded for the as-prepared cell is 365 mW cm-2 at at 700oC in the CH4/air flow (CH4:O2=2:1) with a total flow rate 350 sccm. The plausible cause for a higher power density is less carbon poisoning suffered in the procedure based on nickel metal.
    We also find that matching thermal expansion between the electrodes and the electrolyte is critical to the cell performance. On the cathode side, we relax the thermal stress with a gradient structure, in which the layer near the GDC diffusion barrier is coated with a composition of high GDC content. For the layer away form the GDC diffusion barrier, the cathode composition of less GDC content is used. On the anode, only one composition is applied throughout the anode support. The GDC+NiO composite with 10 wt% LDM addition is found to generate the best power performance.
    Keywords:LAMOX solid state electrolyte;single cell test;outside  
         initialization

    目錄 摘要 I ABSTRACT IV 目錄 VI 圖目錄 X 表目錄 XIII 第一章 序論 1 1-1前言 1 1-2 研究動機 2 第二章 文獻回顧與理論基礎 4 2-1 固態氧化物燃料電池基本原理 4 2-1-1 單氣室固態氧化物燃料電池(SC-SOFC) 5 2-1-2 雙氣室固態氧化物燃料電池(DC-SOFC) 7 2-2 固態氧化物燃料電池的電解質 10 2-2-1氧化鈰(CeO2)基電解質 11 2-2-2 鎵酸鑭基(LaGaO3)電解質 13 2-2-3 氧化鉍(Bi2O3)基電解質 14 2-2-4 鑭鉬氧化物(La2Mo2O9)電解質 16 2-2-4-1鑭鉬氧化物(La2Mo2O9)其氧離子導機制 16 2-2-4-2鑭鉬氧化物(La2Mo2O9)優缺點 18 2-3 固態氧化燃料電池陽極 22 2-3-1氧化鋯鎳基陽極 22 2-3-2氧化鈰鎳基陽極 23 2-3-3鈣鈦礦結構陽極材料 24 2-3-4 La2Mo2O9系電解質的配合陽極 25 2-4 固態氧化燃料電池陰極 27 2-4-1 陰極改質 30 2-5粉體製備 32 第三章 實驗方法與步驟 35 3-1實驗方法 35 3-2 實驗藥品 37 3-3儀器設備 39 3-4電池元件的製備 41 3-4-1製備 LDM 電解質粉末 41 3-4-2製備 GDC與 LSCF 陰極粉末 42 3-4-3製備 NiO - GDC - LDM 陽極支撐材 45 3-4-4調製電池元件用膠 46 3-4-5製備陰極電極 47 3-4-6製備電流收集器 47 3-5燃料電池之特性鑑定與分析 49 3-5-1 SEM 表面影像分析 49 3-5-2熱膨脹係數分析 49 3-6燃料電池之測試 50 3-6-1測試系統簡介 50 3-6-2電池電流-電壓測試流程 51 第四章 結果與討論 52 4-1 XRD分析 54 4-1-1 陽極氫氣還原XRD分析 54 4-1-2 陰極氫氣還原XRD分析 57 4-2 陽極起始化時間與開環電位曲線圖 60 4-3熱膨脹係數匹配 64 4-3-1 陰極熱膨脹係數匹配 64 4-3-2梯度材料陰極電功率密度測試 67 4-3-3 陽極熱膨脹係數匹配 69 4-3-4陽極熱膨脹係數匹配電功率密度測試 72 4-4不同NIO含量之陽極 74 4-4-1電功率密度測試 74 4-4-2 SEM分析 75 4-5 鎳金屬陽極SC-SOFC 77 4-5-1 採用鎳金屬陽極 77 4-5-2 氮氣燒結XRD分析 80 4-5-3電功率密度測試 82 第五章 結論 83 圖目錄 圖2-1燃料電池運轉示意圖[4] 5 圖2-2電極非共平面SC-SOFC示意圖[9] 7 圖2-3雙器室固態氧化燃料測試設備示意圖[13] 8 圖2-4立方螢石結構(A4O8) [21] 11 圖2-5摻雜陽極離子半徑對氧化鈰系列電解質導電度的影響[22] 13 圖2-6鈣鈦礦結構圖(ABO3) [15] 14 圖2-7各種固態氧化物電解質氧離子導電率[15] 16 圖2-8 SNWO4晶格結構 17 圖2-9 LA2MO2O9 相變圖[28] 19 圖2-10 (A)Β- SNWO4與(B) Β- LA2MO2O9離子結構[29] 20 圖2-11 (LA1.8DY0.2)(MO2-YWY)O9的導電率對溫度的關係[32] 21 圖2-12氧化鑭與氧化鉬之相圖[33] 26 圖2-13陰極氧還原反應,(A) 陰極為單純電子導體時(B)陰極為電子與離子混合導體材料時,箭頭指示氧還原反應發生的區域[22] 28 圖2-14檸檬酸分子示意圖 34 圖3-1實驗步驟流程圖 36 圖3-2 LDM粉末之燒結程序 42 圖3-3 GDC粉末之燒結程序 43 圖3-4 陰極粉末之煆燒程序 45 圖3-5 陽極基材製備燒結程序 46 圖3-6 SC-SOFC單電池測試系統 50 圖3-7爐體於中心之側面圖 51 圖4-1電池之表面與側面圖 53 圖4-2 50 wt % 的LDM與50 wt % 的NiO於3小時。氫氣氣氛下,不同溫度還原後之XRD圖譜 56 圖4-3 50 wt % 的GDC與50 wt % 的LSCF6482於3小時。氫氣氣氛下,不同溫度還原後之XRD圖譜 59 圖4-4 陽極起始化以甲烷當作還原氣體,開環電位隨時間之變化 61 圖4-5金屬鎳錠貼後,電池開環電位與起始化時間關係圖 62 圖4-6 650 oC 陽極起始化時間與Ni錠距離間之關係圖 63 圖4-7 陰極SEM側面圖 64 圖4-8梯度陰極材料熱膨脹係數分析圖 65 圖4-9 摻雜50 wt % GDC之陰極側面圖 66 圖4-10 梯度材料陰極電池示意圖 67 圖4-11單一結構陰極與不同材料組成、粒徑梯度結構之多層陰極於700 oC下的I-P曲線圖 69 圖4-12 陽極SEM側面圖 70 圖4-13陽極中摻雜不等量LDM之熱膨脹係數曲線圖 71 圖4-14 摻雜LDM於陽極之側面圖 72 圖4-15 不同LDM摻雜量之陽極所製備電池之I-V與I-P圖 73 圖4-16不同NIO含量之陽極所製備的電池之I-P與I-V曲線圖 75 圖4-17不同NiO含量之陽極表面SEM圖 76 圖4-18 (A) Anode reduction by Ni pellet (B) Anode reduction by hydrogen 78 圖4-19 鎳金屬陽極SC-SOFC之實驗流程圖 79 圖4-20 氮氣燒結XRD分析 81 圖4-21 為氮氣燒結電解質-電極組之I-V與I-P圖 82 表目錄 表2-1溶膠-凝膠法之優缺點比較 34 表3-1品來源及規格 37 表3-2儀器規格及廠牌 39 表4-1以甲烷為燃料時SOFC陽極之各種可能之反應 60 表4-2 LSCF摻雜不同含量的GDC之熱膨脹係數 65 表4-3陰極代表符號及其組成 67 表4-4陽極摻雜不同含量的LDM之熱膨脹係數 71

    參考文獻
    1. S. P. S. Badwal, and K. Foger, Solid oxide electrolyte fuel cell review, Ceramics International, 22 (3) 257-265 (1996).
    2. Chunming Zhang, Yao Zheng, Ran Rana, Zongping Shao, Wanqin Jin, Nanping Xu, and Jeongmin Ahn, Initialization of a methane-fueled single-chamber solid-oxide fuel cell with NiO + SDC anode and BSCF + SDC cathode, Journal of Power Sources, 179 640–648 (2008).
    3. Jesús Canales-Vázquez , Juan Carlos Ruiz-Morales, David Marrero-López, Juan Peňa-Maríınez, Pedro Núňez, and Pedro Gómez-Romerob, Fe-substituted (La,Sr)TiO3 as potential electrodes for symmetrical fuel cells (SFCs), Journal of Power Sources, 171 552–557 (2007).
    4. R.J. Gorte, and J.M. Vohs, Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons, Journal of Catalysis, 216 477–486 (2003).
    5. Toshio Suzuki, Piotr Jasinski, Vladimir Petrovsky, Harlan U. Anderson, and Fatih Dogan, Performance of a Porous Electrolyte in Single- Chamber SOFCs, Journal of The Electrochemical Society, 152 (3) A527-A531 (2005).
    6. Takashi Hibino, Atsuko Hashimoto, Takao Inoue, Jun-ichi Tokuno, Shin-ichiro Yoshida, and Mitsuru Sano, A Solid Oxide Fuel Cell Using an Exothermic Reaction as the Heat Source, Journal of The Electrochemical Society, 148 (6) A544-A549 (2001).
    7. Toshio Suzuki, Piotr Jasinski, Vladimir Petrovsky, Harlan U. Anderson, and Fatih Dogan, Anode Supported Single Chamber Solid Oxide Fuel Cell in CH4-Air Mixture, Journal of The Electrochemical Society, 151 (9) A1473-A1476 (2004).
    8. Masaya Yano, Atsuko Tomita, Mitsuru Sano, and Takashi Hibino, Recent advances in single-chamber solid oxide fuel cells: A review, Solid State Ionics 177 3351–3359 (2007).
    9. Takashi Hibino, Shuqiang Wang, Shiro Kakimoto, and Mitsuru Sano, One-chamber solid oxide fuel cell constructed from a YSZ electrolyte with a Ni anode and LSM cathode, Solid State Ionics 127 89–98 (2000).
    10. X. Jacques-Bédard, T.W. Napporn, R. Roberge, and M. Meunier, Performance and ageing of an anode-supported SOFC operated in single-chamber conditions, Journal of Power Sources, 153 108–113 (2006).
    11. Juan Carlos Ruiz-Morales, Jesús Canales-Vázquez, Juan Peňa-Martínez, David Marrero López, and Pedro Núňez, On the simultaneous use of La0.75Sr0.25Cr0.5Mn0.5O3−δ as both anode and cathode material with improved microstructure in solid oxide fuel cells, Electrochimica Acta, 52 278–284 (2006).
    12. R.J. Gorte, and J.M. Vohs, Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons, Journal of Catalysis, 216 477–486 (2003).
    13. Takashi Hibino, Atsuko Hashimoto, Takao Inoue, and Jun-ichi Tokuno, Shin-ichiro Yoshida,band Mitsuru Sanob, Single-Chamber Solid Oxide Fuel Cells at Intermediate Temperatures with Various Hydrocarbon-Air Mixtures, Journal of The Electrochemical Society, 147 (8) 2888-2892 (2000).
    14. Kongfa Chen, Yanting Tian, Zhe Lu, Na Aia, Xiqiang Huang, and Wenhui Su, Behavior of 3 mol% yttria-stabilized tetragonal zirconia polycrystal film prepared by slurry spin coating, Journal of Power Sources, 186 128–132 (2009).
    15. Sossina M. Haile, Fuel cell materials and components, Acta Materialia, 51 5981–6000 (2003).
    16. Sossina M. Haile, Materials for fuel cells, Materials Today, 6 (3) 24-29 (2003).
    17. F. Tietz, H.-P. Buchkremer, and D. Stöver, Components manufacturing for solid oxide fuel cells, Solid State Ionics, 152– 153 373– 381 (2002).
    18. T. H. Etsell, and Spyridon N. Flengas, The electrical properties of solid oxide electrolytes, Chemical Reviews, 70 (3) 339-376 (1970).
    19. Y.J. Leng, S.H. Chan, S.P. Jiang, and K.A. Khor, Low-temperature SOFC with thin film GDC electrolyte prepared in situ by solid-state reaction, Solid State Ionics 170 9 –15 (2004).
    20. Toshiaki Matsui, Minoru Inaba, Atsushi Mineshige, and Zempachi Ogumi, Electrochemical properties of ceria-based oxides for use in intermediate-temperature SOFCs, Solid State Ionics, 176 647–654 (2005).
    21. CH.Y. Kang, H. Kusaba, H. Yahiro, K. Sasaki, and Y. Teraoka, Preparation, characterization and electrical property of Mn-doped ceria-based oxides, Solid State Ionics, 177 1799–1802(2006).
    22. J. Molenda, K.Świerczek, and W. Zając, Functional materials for the IT-SOFC, Journal of Power Sources, 173 657–670 (2007).
    23. Tatsumi Ishihara, Hideaki Matsuda, and Yusaku Takita, Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor, Journal of the American Chemical Society, 116 (9) 3801-3803 (1994).
    24. Dan Xu, Xiaomei Liu, Dejun Wang, Guangyu Yi, Yang Gao, Daisheng Zhang, and Wenhui Su, Fabrication and characterization of SDC–LSGM composite electrolytes material in IT-SOFCs, Journal of Alloys and Compounds, 429 292–295 (2007).
    25. Marko Hrovat, Ariane Ahmad-Khanlou, Zoran Samard, and Janez Holc, Interactions between lanthanum gallate based solid electrolyte and ceria, Materials Research Bulletin, 34 (12) 2027-2034 (1999).
    26. P. Shuka, H.-D. Wiemhöferb, U. Guthc, W. Göpeld, and M. Greenblatta, Oxide ion conducting solid electrolytes based on Bi2O3, Solid State Ionics, 89 179-196 (1996).
    27. Baoan Fan, Jiabao Yan, and Wenping Shi, A high performance solid oxide fuel cells operating at intermediate temperature with a modified interface between cathode and electrolyte, Journal of the European Ceramic Society 30 1803–1808 (2010).
    28. Philippe Lacorre, François Goutenoire, Odile Bohnke, Richard Retoux, and Yvon Laligant, Designing fast oxide-ion conductors based on La2Mo2O9, Nature, 404 (6780) 856-858 (2010).
    29. F. Goutenoire, O. Isnard, E. Suard, O. Bohnke, Y. Laligant, R. Retoux and Ph. Lacorre, Structural and transport characteristics of the LAMOX family of fast oxide-ion conductors, based on lanthanum molybdenum oxide La2Mo2O9, Journal of Materials Chemistry, 11 (1) 119-124 (2001).
    30. D. Marrero-López, J. Peňa-Martínez, J.C. Ruiz-Morales, and P. Núňez, Phase stability and ionic conductivity in substituted La2W2O9, Journal of Solid State Chemistry, 181 253–262 (2008).
    31. Dah-Shyang Tsai, Meng-Ju Hsieh, Jang-Chung Tseng, and Hsin-Yi Lee, Ionic conductivities and phase transitions of lanthanide rare-earth substituted La2Mo2O9, Journal of the European Ceramic Society, 25 481–487 (2005).
    32. Tsu-Yung Jin, M.V. Madhava Rao, Chia-Liang Cheng, Dah-Shyang Tsai, and Ming-Hao Hung, Structural stability and ion conductivity of the Dy and W substituted La2Mo2O9, Solid State Ionics, 178 367–374 (2007).
    33. Fournier, J., Fournier, J., and Kohlmuller, R., “Etude des systemes La2O3-MoO3,Y2O3-MoO3, et des phases Ln6MoO12,” Bulletin de la Societe Chimique de France,12 4277-83 (1970)
    34. Ekaterina V. Tsipis, and Vladislav V. Kharton, Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review, J Solid State Electrochem, 12 1367–1391 (2008).
    35. Changrong Xia, and Meilin Liu, Microstructures, conductivities, and electrochemical properties of Ce0.9Gd0.1O2 and GDC–Ni anodes for low-temperature SOFCs, Solid State Ionics, 152– 153 423– 430 (2002).
    36. Makiko Asamoto, Shinji Miyake, Yoshiteru Itagaki, Yoshihiko Sadaoka, and Hidenori Yahiro, Electrocatalytic performances of Ni/SDC anodes fabricated with EPD techniques for direct oxidation of CH4 in solid oxide fuel cells, Catalysis Today, 139 77–81 (2008).
    37. X.C. Lu,and J.H. Zhu, Cu(Pd)-impregnated La0.75Sr0.25Cr0.5Mn0.5O3 − δ anodes for direct utilization of methane in SOFC, Solid State Ionics, 178 1467–1475 (2007).
    38. Feng Zhao, and Anil V. Virkar, Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters, Journal of Power Sources, 141 79–95 (2005).
    39. Daniel J. L. Brett, Alan Atkinson, Nigel P. Brandon, and Stephen J. Skinner, Intermediate temperature solid oxide fuel cells, Chemical Society Reviews, 37 (8) 1568-1578 (2008).
    40. L.-W. Tai, M.M. Nasrallah , H.U. Anderson, D.M. Sparlin, and S.R. Sehlin, Structure and electrical properties of La1-xSrxCo1-yFeyO3. Part 1. The system La0.8Sr0.2Co1-yFeyO3, Solid State Ionics, 76 259-271 (1995).
    41. P. Ried, P. Holtappels, A. Wichser, A. Ulrich, and T. Graulea, Synthesis and Characterization of La0.6Sr0.4Co0.2Fe0.8O3−δ and Ba0.5Sr0.5Co0.8Fe0.2O3−δ, Journal of The Electrochemical Society, 155 (10) B1029-B1035 (2008).
    42. Ze Liu, Min-Fang Han, and Wen-Ting Miao, Preparation and characterization of graded cathode La0.6Sr0.4Co0.2Fe0.8O3−δ, Journal of Power Sources, 173 837–841 (2007).
    43. Ying Liu, Charles Compson, and Meilin Liu, Nanostructured and functionally graded cathodes for intermediate temperature solid oxide fuel cells, Journal of Power Sources, 138 194–198 (2004).
    44. Xingyan Xu, Changrong Xia, Guoliang Xiao, and Dingkun Peng, Fabrication and performance of functionally graded cathodes for IT-SOFCs based on doped ceria electrolytes, Solid State Ionics, 176 1513 – 1520 (2005).
    45. By W. S. Xia, H. O. Zhang, G. L. Wang, and Y. Z. Yang, Functionally graded layers prepared by atmospheric plasma spraying for solid oxide fuel cells, Advanced Engineering Materials, 11 111-116 (2009).
    46. P. Holtappels, C. Bagger, Fabrication and performance of advanced multi-layer SOFC cathodes, Journal of the European Ceramic Society, 22 41–48 (2002).
    47. Chao Jin, Jiang Liu,Weimin Guo, and Yaohui Zhang, Electrochemical characteristics of an La0.6Sr0.4Co0.2Fe0.8O3–La0.8Sr0.2MnO3 multi-layer composite cathode for intermediate-temperature solid oxide fuel cells, Journal of Power Sources, 183 506–511 (2008).
    48. Mary A. Sukeshini, Ryan Cummins, Thomas L. Reitz, and Ryan M. Miller, Ink-jet printing: A versatile method for multilayer solid oxide fuel cells fabrication, Journal of the American Ceramic Society, 92 (12) 2913-2919 (2009).
    49. Francesca Deganello, Vincenzo Esposito, Masaru Miyayama, and Enrico Traversa, Cathode Performance of Nanostructured La1−aSraCo1−bFebO3−x on a Ce0.8Sm0.2O2 Electrolyte Prepared by Citrate-Nitrate Autocombustion, Journal of The Electrochemical Society, 154 (2)A89-A96 (2007).
    50. Nora A. Merino, Bibiana P. Barbero, Caroline Cellier, Julio Andrade Gamboa, and Luis E. Cadú sa, Effect of the calcium on the textural, structural and catalytic properties of La1–xCaxCo1–yFeyO3 perovskites, Catalysis Letters, 113 (3-4), 130-140 (2007).
    51. Hee Sung Yoon, Seung Woo Choi, Dokyol Lee, and Byong Ho Kim, Synthesis and characterization of Gd1-xSrxMnO3 cathode for solid oxide fuel cells, Journal of Power Sources, 93 1-7 (2001).
    52. Seunghun Lee , Yongho Lim, Eun A Lee, Hae Jin Hwang, and Ji-Woong Moonb, Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) and La0.6Ba0.4Co0.2Fe0.8O3-δ (LBCF) cathodes prepared by combined citrate-EDTA method for IT-SOFCs, Journal of Power Sources, 157 848–854 (2006).
    53. Mingliang Liu, Zhe Lü, Bo Wei,a Ruibin Zhu, Xiqiang Huang, Kongfa Chen, Gang Ai, and Wenhui Sua, Anode-Supported Micro-SOFC Stacks Operated under Single-Chamber Conditions, Journal of The Electrochemical Society, 154 (6) B588-B592 (2007).
    54. 陳政緯,半電池反應之交流主抗研究鑭鈣鈷鐵氧化物陰極,碩士學位論文,國立台灣科技大學,台北,民國九十六年。
    55. 張混傑,氧化鈰薄層對鑭鍶鈷鐵氧/鑭鉬氧半電池之阻抗影響,碩士學位論文,國立台灣科技大學,台北,民國九十七年。
    56. Zongping Shao, Jennifer Mederos, William C. Chueh, and Sossina.M. Haile, High power-density single-chamber fuel cells operated on methane, Journal of Power Sources, 162 589–596 (2006).
    57. S. Ohara, R. Maric , X. Zhang , K. Mukai , T. Fukui , H. Yoshida , T. Inagaki ,and K. Miura, High performance electrodes for reduced temperature solid oxide fuel cells with doped lanthanum gallate electrolyte I. Ni–SDC cermet anode, Journal of Power Sources, 86(2000)455–458
    58. Min Chen, Bok Hee Kim, Qing Xub, O. Jeong Nam,and Jung Hoon Ko, Synthesis and performances of Ni–SDC cermets for IT-SOFC anode, Journal of the European Ceramic Society 28 (2008) 2947–2953

    無法下載圖示 全文公開日期 2015/07/15 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE