簡易檢索 / 詳目顯示

研究生: Rajakumari Krishnamoorthi
Rajakumari Krishnamoorthi
論文名稱: 貽貝衍生生物相容性高分子改質薄膜於環境與降低細胞黏附性之應用
Mussel inspired biocompatible polymer coated membrane substrate for environmental and reduced cell adhesion application
指導教授: 蔡協致
Hsieh-Chih Tsai
王志逢
Chih-Feng Wang
口試委員: 蔡協致
Hsieh-Chih Tsai
王志逢
Chih-Feng Wang
胡蒨傑
Chien-Chieh Hu
Wei-Song Hong
Wei-Song Hong
Jen -Ming Yang
Jen -Ming Yang
Da-Ming Wang
Da-Ming Wang
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 110
外文關鍵詞: Mussel inspired chemistry, Membrane separation, Caffeic acid and polymer, Dye and metal ion adsorption, Anti cell adhesion application
相關次數: 點閱:344下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

由於多巴結構聚合物材料有奇特黏附特性,因此表面工程技術中受到關注。貽貝足蛋白含有兒茶酚基之氨基酸,即多巴(3,4-二羥基-L-苯丙氨酸),它被認為是潮濕環境中功能塗層的關鍵成分。 並可以利用多功能的catechol自合成化學反應來製造膜、表面改質膜及利用在無機和有機複合材料致被,包含貴金屬、氧化物、高分子材料、半導體、陶瓷,此外,利用貽貝化學之二次反應可用於製造各種表面塗層,例如通過接枝高分子並經分子構建塊重組的表面塗層並作為生物惰性、生物活性和防污材料應用。
在本論文中,將利用天然咖啡酸及仿貽貝化學機制結合應用在膜表面改質,我們設計了三項不同的研究來評估咖啡酸的高分子材料改質膜在環境和血細胞粘附上的應用。咖啡酸是一種在植物中發現的天然酚酸化合物。它也具有catechol基團是故也可以做反應位點,並通過自聚合之貽貝化學反應。咖啡酸之羧基因容易電離及水合,因此可以獲得更好的防污表面。
第一項研究,利用簡單的方法來製造用於水包油乳液分離和染料吸附的超潤濕咖啡酸 (CA) 聚乙烯亞胺 (PEI) 改性三聚氰胺海綿 (CA-PEI-MS)。CA-PEI-MS 表現出超親水性及水接觸角 (WCA) 接近於零,同時水下超疏油性和水下油接觸角 (UWOCA) 大於 150o。此材料油水乳液分離效率大於 97%,水通量高達 25480 Lh-1m-2bar-1。油水乳液再回收性測試中發現壓縮後的 CA-PEI-MS 經丙酮洗滌後仍具穩定性; 在 12次循環分離測試期間,通量沒有顯示任何顯著改變。每個循環的分離效率都大於97%。此外,由於海綿表面具正電荷,故 CA-PEI-MS 對帶負電荷的染料如玫瑰紅 (RB) 和直接紅 (DR) 顯示優異之吸附能力。簡而言之CA-PEI-MS 表現出高性能和優異的通量及分離效率,且製備過程成本低廉兼具環保性,故具有巨大的市場應用之潛力。
第二部分是建造超潤濕棉花基材用於廢水處理,利用咖啡酸 (CA) 和殼聚醣 (CHI) 對棉纖維 (CF) 進行表面改質。所製備的 CA-CS-CF 材料表現出超親水性(即水接觸角為~0°)和水下超疏油性(即水下油接觸角≥160°)。值得注意的是,壓縮後的 CA-CHI-CF 表現出優異的水包油乳液分離性能,即在 0.1 bar 壓力下通量高達 50,050 Lh-1m-2bar-1,分離效率 >99.9%。由於咖啡酸和殼聚醣提供的氨基、羧基和羥基的優勢,CA-CHI-CF對陽離子染料(> 99%)和重金屬離子(> 99%)表現出優異的吸附能力。為了證明我們系統的適用性,我們也進行染料與含金屬離子乳液的之基準分離實驗。發現 CA-CHI-CF 同時從溶液中分離所有目標污染物。同時還表現出良好的生物相容性和生物降解性,從而證實了其在實際應用之潛力。
最後,在第三項工作中,我們通過席夫鹼和邁克爾加成反應使用(CA-CS)通過硫酸軟骨素和咖啡酸高分子材料的交聯並製備血液相容性聚碳酸酯膜(PC),並命名為CA-CS-PC。新的製造薄膜除具優異的親水性,0°水接觸角和負表面電荷,zeta電位 -32 mV。使用人血漿蛋白纖維蛋白原吸附研究通過酶聯免疫吸附試驗(ELISA)研究了 CA-CS 改質 PC膜的防污性能,並證明了由於較低的Fg吸附而具有出色的防污和生物惰性性能。此外,CA-CS-PC膜還顯示出增強的血液相容性。最後,通過CLSM和SEM觀察CA-CS-PC膜的血細胞附著試驗,所得結果證明CA-CS-PC有效抵抗血小板和白細胞等細胞粘附。因此,這項工作揭示了一種通過咖啡酸和硫酸軟骨素設計簡單且通用的膜表面修飾並應用於細胞粘附的新方法。


The development of mussel-inspired polymeric material has been attracted in surface engineering technology owing to its universal adhesion property. The mussel foot proteins contain catechol amino acid i.e. DOPA (3,4-dihydroxy –L-phenylalanine), which is considered as the key component for the functional coating in the moist environment. It offers versatile catechol chemistry to fabricate the membrane and develop composites via the self-polymerization, surface adherent films onto a wide range of inorganic and organic materials including noble metals, oxides, polymers, semiconductors, ceramics for biological, chemical, energy, environmental application. In addition, mussel inspired materials secondary reaction can be used to create a variety of adhesive layers, including reassembled monolayers through the deposition of long-chain molecular building blocks via grafting macromolecules for bio-inert, bioactive, and antifouling materials for a variety of applications.
In this dissertation, combining effective mussel-inspired chemistry with environmentally friendly naturally available caffeic acid, we have designed three different studies to evaluate caffeic acid-based polymer modified membranes for environmental and blood cell adhesion application. Caffeic acid is a natural phenolic acid compound found in plants and contains a catechol structure which is a key reaction site for mussel inspired chemistry via self-polymerization. It can achieve a better antifouling surface because the carboxyl group is easier to ionize and hydrate can alter the surface property via secondary modification reaction. However, as far as we know very few articles only reported on the surface modification based on the mussel-inspired chemistry of caffeic acid.
In the first work, we report a simple method to fabricate a superwetting caffeic acid (CA) polyethyleneimine (PEI)-modified melamine sponge (CA-PEI-MS) for oil-in-water emulsion separation and dye adsorption. The as-fabricated CA-PEI-MS exhibited super hydrophilicity with an approximately zero water contact angle (WCA) and underwater superoleophobicity with an underwater oil contact angle (UWOCA) greater than 150o. The compressed CA-PEI-MS showed an excellent oil-in-water emulsion separation performance with a separation efficiency greater than 97 % and a water flux up to 25480 L h-1 m-2 bar-1. The recyclability test was used to study the stability of the compressed CA-PEI-MS, after being washed with acetone; the flux did not show any significant change during the 12-cycle separation test. The separation efficiency in every cycle was greater than 97 %. Moreover, the as-fabricated CA-PEI-MS exhibited adsorption ability towards negatively charged dyes such as rosebengal (RB) and direct red (DR), due to its positive surface charge. The CA-PEI-MS has a great potential for practical application because it shows high performance and excellent efficiency, and the preparation procedure is low-cost and eco-friendly.
The second work based on the superwettable cotton-based materials for wastewater treatment was constructed by modifying cotton fiber (CF) with caffeic acid (CA) and chitosan (CHI). The as-prepared CA-CS-CF materials exhibited superhydrophilicity (i.e., a water contact angle of~0°) and underwater superoleophobicity (i.e., an underwater oil contact angle ≥160°). Notably, the compressed CA-CHI-CF exhibited an excellent oil-in-water emulsion separation performance, i.e., a flux up to 50,050 L h−1 m−2 bar−1 under 0.1 bar pressure, and a separation efficiency >99.9%. Interestingly, due to the advantages of the amino, carboxyl, and hydroxyl groups offered by caffeic acid and chitosan, CA-CHI-CF showed excellent adsorption capabilities for cationic dyes (>99%) and heavy metal ions (>99%). To demonstrate the applicability of our system, a benchmark separation experiment was conducted, namely the separation of dye and metal ion-spiked emulsions. CA-CHI-CF was found to separate all target pollutants from the solution simultaneously. CA-CHI-CF also exhibited good biocompatibility and biodegradability, thereby confirming its great potential for practical applications.
Finally, in the third work, we fabricate mussel inspired hemocompatible polycarbonate membrane (PC) modified by cross-linking of Chondroitin sulfate and Caffeic acid polymer using (CA-CS) via Schiff base and Michael addition reaction and named as CA-CS-PC. The as-fabricated CA-CS-PC membrane shows excellent hydrophilicity with 0° water contact angle and negative surface charge with zeta potential -32 mV. The antifouling property of CA-CS modified PC membrane was investigated by the enzyme-linked immunosorbent assay (ELISA) using human plasma protein fibrinogen adsorption studies and proved excellent antifouling and bio-inert properties due to the lower Fg adsorption. In addition, the CA-CS-PC membrane also shows enhanced hemocompatibility properties. Finally, blood cell attachment tests of the CA-CS-PC membrane were observed by CLSM and SEM, and the obtained results proved that CA-CS-PC effectively resists cell adhesion such as platelets and leucocytes. Therefore, this work disclosed a new way to design simple and versatile modification of membrane surface by caffeic acid and Chondroitin sulfate and apply for cell adhesion.

Table of Contents 中文摘要 viii Abstract x Acknowledgement xii List of Figures xiii List of Tables xiii Chapter 1 1 1 Background and its significance 1 1.1 Environmental and reduced cell adhesion 1 Chapter 2 4 2 Introduction 4 2.1 Water pollution 4 2.1.1 Oil pollutants 4 2.1.2 Dye pollutants 5 2.1.3 Metal ion pollutants 6 2.2 Membrane 7 2.2.1 Types of membrane 8 2.3 Why do we need surface modification? 9 2.3.1 Types of surface modification methods 10 2.4 Mussel inspired Chemistry 10 2.4.1 Structure and adhesion mechanism 11 2.4.2 Physical and Chemical properties 13 2.5 Modification methods 14 2.5.1 One step modification or co-deposition 14 2.5.2 Postmodification or two-step modification 15 2.5.3 Metal embedded modification 15 2.5.4 Blending and Interfacial polymerization 15 2.6 Application 16 2.6.1 As super wetting material for Oil-water separation 16 2.6.2 PDA modified substrate by mussel inspired method for removal of pollutants 19 2.6.3 PDA coated substrate by mussel inspired method for multifunctional application 20 2.6.4 Mussel inspired material coated substrate for bio inert and hemocompatible material 21 Chapter 3 23 3 Research Objectives 23 Chapter 4 24 4 Preparation of caffeic acid-polyethyleneimine modified sponge for emulsion separation and selective dye adsorption 24 4.1 Introduction 24 4.2 Experimental 26 4.2.1 Materials 26 4.2.2 In-situ coating of CA-PEI on MS 26 4.2.3 Preparation oil-in-water emulsion 27 4.2.4 Separation of oil-in-water emulsion 27 4.2.5 Dye adsorption studies of CA-PEI-MS 28 4.2.6 Characterization 28 4.3 Results and discussion 29 4.3.1 Fabrication of CA-PEI-MS and its physicochemical properties 29 4.3.2 Oil in water emulsion separation 34 4.3.3 Reusability 36 4.3.4 dye adsorption 37 4.4 Conclusions 39 Chapter 5 40 5 Biodegradable, superwettable caffeic acid/chitosan polymer coated cotton fibers for the simultaneous removal of oils, dyes, and metal ions from water 40 5.1 Introduction 40 5.2 Experimental section 42 5.2.1 Material and characterization 42 5.2.2 Preparation of CA-CHI-CF 42 5.2.3 Preparation and separation of surfactant-stabilized oil-in-water emulsion 42 5.2.4 Dye and heavy metal ion adsorption 43 5.2.5 Biocompatibility and biodegradability of CA-CHI-CF 44 5.2.6 Characterization 45 5.3 Results and discussion 45 5.3.1 Fabrication of CA-CHI-CF and its physicochemical 45 5.3.2 Oil in water emulsion separation 53 5.3.3 Stability in hazardous condition 56 5.3.4 Reusability 57 5.3.5 Dye adsorption 58 5.3.6 In-situ removal of dye and metal ion spiked emulsion from water 65 5.3.7 Biocompatibility and Biodegradability 71 5.4 Conclusion 72 Chapter 6 73 6 Anti-blood cell adhesion of mussel inspired Chondroitin sulfate and Caffeic acid modified antifouling PC membrane 73 6.1 Introduction 73 6.2 Experimental procedure 75 6.2.1 Materials. 75 6.2.2 Synthesis of CS-ADH 75 6.2.3 Preparation of CS-ADH-CA modified PC membrane 76 6.2.4 Hemolysis of Red blood cell 76 6.2.5 Fibrinogen adsorption on membrane on membrane by Enzyme-Linked Immunosorbent Assay 76 6.2.6 Cell attachment 77 6.2.7 Characterization 77 6.3 Result and discussion 78 6.3.1 Synthesis and characterization of CA-ADH and CS-CA adhesive polymer 78 6.3.2 Fabrication and of CA-CS-PC membrane and its physicochemical properties 81 6.3.3 Relative protein adsorption (a) and Hemolysis ratio 87 6.3.4 Anti-cell adhesion analysis 89 6.4 Conclusion 91 Chapter 7 92 7 Conclusion 92 8 Reference: 94

1. Kostianoy, A. G.; Carpenter, A., History, sources and volumes of oil pollution in the Mediterranean Sea. In Oil Pollution in the Mediterranean Sea: Part I, Springer: 2018; pp 9-31.
2. Tellez, G. T.; Nirmalakhandan, N.; Gardea-Torresdey, J. L., Performance evaluation of an activated sludge system for removing petroleum hydrocarbons from oilfield produced water. Advances in Environmental Research 2002, 6 (4), 455-470.
3. Dyke, C. A.; Bartels, C. R. J. E. P., Removal of organics from offshore produced waters using nanofiltration membrane technology. 1990, 9 (3), 183-186.
4. Ahmad, T.; Guria, C.; Mandal, A., A review of oily wastewater treatment using ultrafiltration membrane: A parametric study to enhance the membrane performance. Journal of Water Process Engineering 2020, 36, 101289.
5. Salahi, A.; Noshadi, I.; Badrnezhad, R.; Kanjilal, B.; Mohammadi, T. J. J. o. E. C. E., Nano-porous membrane process for oily wastewater treatment: optimization using response surface methodology. 2013, 1 (3), 218-225.
6. Fakhru’l-Razi, A.; Pendashteh, A.; Abdullah, L. C.; Biak, D. R. A.; Madaeni, S. S.; Abidin, Z. Z., Review of technologies for oil and gas produced water treatment. Journal of Hazardous Materials 2009, 170 (2), 530-551.
7. Zhang, X.; Huang, Q.; Deng, F.; Huang, H.; Wan, Q.; Liu, M.; Wei, Y., Mussel-inspired fabrication of functional materials and their environmental applications: Progress and prospects. Applied Materials Today 2017, 7, 222-238.
8. Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. J. s., Mussel-inspired surface chemistry for multifunctional coatings. 2007, 318 (5849), 426-430.
9. Yan, Z.; Zhang, Y.; Yang, H.; Fan, G.; Ding, A.; Liang, H.; Li, G.; Ren, N.; Van der Bruggen, B., Mussel-inspired polydopamine modification of polymeric membranes for the application of water and wastewater treatment: A review. Chemical Engineering Research and Design 2020, 157, 195-214.
10. Zhang, C.; Wu, B.; Zhou, Y.; Zhou, F.; Liu, W.; Wang, Z. J. C. S. R., Mussel-inspired hydrogels: from design principles to promising applications. 2020, 49 (11), 3605-3637.
11. Lee, H.; Scherer, N. F.; Messersmith, P. B. J. P. o. t. N. A. o. S., Single-molecule mechanics of mussel adhesion. 2006, 103 (35), 12999-13003.
12. Kaushik, N. K.; Kaushik, N.; Pardeshi, S.; Sharma, J. G.; Lee, S. H.; Choi, E. H., Biomedical and Clinical Importance of Mussel-Inspired Polymers and Materials. Mar Drugs 2015, 13 (11), 6792-6817.
13. Yang, Y.; Qi, P.; Wen, F.; Li, X.; Xia, Q.; Maitz, M. F.; Yang, Z.; Shen, R.; Tu, Q.; Huang, N. J. A. a. m.; interfaces, Mussel-inspired one-step adherent coating rich in amine groups for covalent immobilization of heparin: hemocompatibility, growth behaviors of vascular cells, and tissue response. 2014, 6 (16), 14608-14620.
14. Ma, L.; Qin, H.; Cheng, C.; Xia, Y.; He, C.; Nie, C.; Wang, L.; Zhao, C. J. J. o. M. C. B., Mussel-inspired self-coating at macro-interface with improved biocompatibility and bioactivity via dopamine grafted heparin-like polymers and heparin. 2014, 2 (4), 363-375.
15. Chen, C.; Zhu, X.; Chen, B. J. C. E. J., Covalently cross-linked graphene oxide aerogel with stable structure for high-efficiency water purification. 2018, 354, 896-904.
16. Fahid, M.; Arslan, M.; Shabir, G.; Younus, S.; Yasmeen, T.; Rizwan, M.; Siddique, K.; Ahmad, S. R.; Tahseen, R.; Iqbal, S. J. C., Phragmites australis in combination with hydrocarbons degrading bacteria is a suitable option for remediation of diesel-contaminated water in floating wetlands. 2020, 240, 124890.
17. Noreen, S.; Bhatti, H. N.; Iqbal, M.; Hussain, F.; Sarim, F. M. J. I. j. o. b. m., Chitosan, starch, polyaniline and polypyrrole biocomposite with sugarcane bagasse for the efficient removal of Acid Black dye. 2020, 147, 439-452.
18. Igarashi, T.; Herrera, P. S.; Uchiyama, H.; Miyamae, H.; Iyatomi, N.; Hashimoto, K.; Tabelin, C. B. J. S. o. t. T. E., The two-step neutralization ferrite-formation process for sustainable acid mine drainage treatment: Removal of copper, zinc and arsenic, and the influence of coexisting ions on ferritization. 2020, 715, 136877.
19. Wang, B.; Liu, Q.; Fan, Z. J. F. i. C., A mini review: Application progress of magnetic graphene three-dimensional materials for water purification. 2020, 8, 1069.
20. Reddy, C. M.; Arey, J. S.; Seewald, J. S.; Sylva, S. P.; Lemkau, K. L.; Nelson, R. K.; Carmichael, C. A.; McIntyre, C. P.; Fenwick, J.; Ventura, G. T. J. P. o. t. N. A. o. S., Composition and fate of gas and oil released to the water column during the Deepwater Horizon oil spill. 2012, 109 (50), 20229-20234.
21. Zhang, T.; Kong, L.; Zhang, M.; Qiu, F.; Rong, J.; Pan, J. J. R. A., Synthesis and characterization of porous fibers/polyurethane foam composites for selective removal of oils and organic solvents from water. 2016, 6 (89), 86510-86519.
22. Wang, Y.; Lee, K.; Liu, D.; Guo, J.; Han, Q.; Liu, X.; Zhang, J., Environmental impact and recovery of the Bohai Sea following the 2011 oil spill. Environmental Pollution 2020, 263, 114343.
23. Yong, J.; Huo, J.; Chen, F.; Yang, Q.; Hou, X. J. P. C. C. P., Oil/water separation based on natural materials with super-wettability: recent advances. 2018, 20 (39), 25140-25163.
24. Guan, Y.; Cheng, F.; Pan, Z. J. P., Superwetting polymeric three dimensional (3d) porous materials for oil/water separation: A review. 2019, 11 (5), 806.
25. Guan, Y.; Cheng, F.; Pan, Z., Superwetting Polymeric Three Dimensional (3D) Porous Materials for Oil/Water Separation: A Review. Polymers 2019, 11 (5), 806.
26. Bhatia, S.; Devraj, S., Pollution control in textile industry. WPI Publishing: 2017.
27. Desore, A.; Narula, S. A., An overview on corporate response towards sustainability issues in textile industry. Environment, Development and Sustainability 2018, 20 (4), 1439-1459.
28. Hossain, M. S.; Das, S. C.; Islam, J. M.; Al Mamun, M. A.; Khan, M. A., Reuse of textile mill ETP sludge in environmental friendly bricks–effect of gamma radiation. Radiation Physics and Chemistry 2018, 151, 77-83.
29. Wang, D. In Environmental protection in clothing industry, sustainable development: Proceedings of the 2015 International Conference on sustainable development (ICSD2015), World Scientific: 2016; pp 729-735.
30. Newman, M. C., Fundamentals of ecotoxicology: the science of pollution. CRC press: 2019.
31. Mani, S.; Bharagava, R. N., Exposure to crystal violet, its toxic, genotoxic and carcinogenic effects on environment and its degradation and detoxification for environmental safety. Reviews of Environmental Contamination and Toxicology Volume 237 2016, 71-104.
32. Masindi, V.; Muedi, K. L., Environmental contamination by heavy metals. Heavy metals 2018, 10, 115-132.
33. Förstner, U.; Mader, P.; Salomons, W., Heavy Metals: Problems and Solutions. Springer: 1995.
34. Tutu, H.; McCarthy, T.; Cukrowska, E., The chemical characteristics of acid mine drainage with particular reference to sources, distribution and remediation: the Witwatersrand Basin, South Africa as a case study. Applied geochemistry 2008, 23 (12), 3666-3684.
35. Mohapatra, B. R.; Gould, W. D.; Dinardo, O.; Koren, D. W., Tracking the prokaryotic diversity in acid mine drainage-contaminated environments: a review of molecular methods. Minerals Engineering 2011, 24 (8), 709-718.
36. Velusamy, S.; Roy, A.; Sundaram, S.; Kumar Mallick, T. J. T. C. R., A Review on Heavy Metal Ions and Containing Dyes Removal Through Graphene Oxide‐Based Adsorption Strategies for Textile Wastewater Treatment. 2021.
37. Selatile, M. K.; Ray, S. S.; Ojijo, V.; Sadiku, R., Recent developments in polymeric electrospun nanofibrous membranes for seawater desalination. RSC Advances 2018, 8 (66), 37915-37938.
38. Bera, S. P.; Godhaniya, M.; Kothari, C. J. J. o. B. M., Emerging and advanced membrane technology for wastewater treatment: A review. 2021.
39. Waite, J. H.; Tanzer, M. L. J. S., Polyphenolic substance of Mytilus edulis: novel adhesive containing L-dopa and hydroxyproline. 1981, 212 (4498), 1038-1040.
40. Ahn, B. K. J. J. o. t. A. C. S., Perspectives on Mussel-Inspired Wet Adhesion. 2017, 139 30, 10166-10171.
41. Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B., Mussel-Inspired Surface Chemistry for Multifunctional Coatings. 2007, 318 (5849), 426-430.
42. Cheng, C.; Li, S.; Nie, S.; Zhao, W.; Yang, H.; Sun, S.; Zhao, C., General and Biomimetic Approach to Biopolymer-Functionalized Graphene Oxide Nanosheet through Adhesive Dopamine. Biomacromolecules 2012, 13 (12), 4236-4246.
43. Ragesh, P.; Anand Ganesh, V.; Nair, S. V.; Nair, A. S., A review on ‘self-cleaning and multifunctional materials’. Journal of Materials Chemistry A 2014, 2 (36), 14773-14797.
44. Kang, S. M.; Park, S.; Kim, D.; Park, S. Y.; Ruoff, R. S.; Lee, H. J. A. F. M., Simultaneous reduction and surface functionalization of graphene oxide by mussel‐inspired chemistry. 2011, 21 (1), 108-112.
45. Cui, J.; Yan, Y.; Such, G. K.; Liang, K.; Ochs, C. J.; Postma, A.; Caruso, F., Immobilization and Intracellular Delivery of an Anticancer Drug Using Mussel-Inspired Polydopamine Capsules. Biomacromolecules 2012, 13 (8), 2225-2228.
46. Kim, B. H.; Lee, D. H.; Kim, J. Y.; Shin, D. O.; Jeong, H. Y.; Hong, S.; Yun, J. M.; Koo, C. M.; Lee, H.; Kim, S. O. J. A. M., Mussel‐inspired block copolymer lithography for low surface energy materials of teflon, graphene, and gold. 2011, 23 (47), 5618-5622.
47. Dreyer, D. R.; Miller, D. J.; Freeman, B. D.; Paul, D. R.; Bielawski, C. W. J. L., Elucidating the structure of poly (dopamine). 2012, 28 (15), 6428-6435.
48. Huang, S.; Hou, Q.; Guo, D.; Yang, H.; Chen, T.; Liu, F.; Hu, G.; Zhang, M.; Zhang, J.; Wang, J. J. R. a., Adsorption mechanism of mussel-derived adhesive proteins onto various self-assembled monolayers. 2017, 7 (63), 39530-39538.
49. Das, S.; Rodriguez, N. R. M.; Wei, W.; Waite, J. H.; Israelachvili, J. N. J. A. f. m., Peptide Length and Dopa Determine Iron‐Mediated Cohesion of Mussel Foot Proteins. 2015, 25 (36), 5840-5847.
50. Yu, J.; Wei, W.; Menyo, M. S.; Masic, A.; Waite, J. H.; Israelachvili, J. N. J. B., Adhesion of mussel foot protein-3 to TiO2 surfaces: the effect of pH. 2013, 14 (4), 1072-1077.
51. Yu, J.; Kan, Y.; Rapp, M.; Danner, E.; Wei, W.; Das, S.; Miller, D. R.; Chen, Y.; Waite, J. H.; Israelachvili, J. N. J. P. o. t. N. A. o. S., Adaptive hydrophobic and hydrophilic interactions of mussel foot proteins with organic thin films. 2013, 110 (39), 15680-15685.
52. Lu, Q.; Danner, E.; Waite, J. H.; Israelachvili, J. N.; Zeng, H.; Hwang, D. S. J. J. o. T. R. S. I., Adhesion of mussel foot proteins to different substrate surfaces. 2013, 10 (79), 20120759.
53. Wang, Z.; Yang, H.-C.; He, F.; Peng, S.; Li, Y.; Shao, L.; Darling, S. B., Mussel-Inspired Surface Engineering for Water-Remediation Materials. Matter 2019, 1 (1), 115-155.
54. LaVoie, M. J.; Ostaszewski, B. L.; Weihofen, A.; Schlossmacher, M. G.; Selkoe, D. J. J. N. m., Dopamine covalently modifies and functionally inactivates parkin. 2005, 11 (11), 1214-1221.
55. Lee, H.; Rho, J.; Messersmith, P. B. J. A. m., Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings. 2009, 21 (4), 431-434.
56. Ceylan, H.; Urel, M.; Erkal, T. S.; Tekinay, A. B.; Dana, A.; Guler, M. O. J. A. F. M., Mussel inspired dynamic cross‐linking of self‐healing peptide nanofiber network. 2013, 23 (16), 2081-2090.
57. Guo, L.; Liu, Q.; Li, G.; Shi, J.; Liu, J.; Wang, T.; Jiang, G. J. N., A mussel-inspired polydopamine coating as a versatile platform for the in situ synthesis of graphene-based nanocomposites. 2012, 4 (19), 5864-5867.
58. Asha, A. B.; Chen, Y.; Narain, R. J. C. S. R., Bioinspired dopamine and zwitterionic polymers for non-fouling surface engineering. 2021.
59. Kang, S. M.; Hwang, N. S.; Yeom, J.; Park, S. Y.; Messersmith, P. B.; Choi, I. S.; Langer, R.; Anderson, D. G.; Lee, H. J. A. f. m., One‐step multipurpose surface functionalization by adhesive catecholamine. 2012, 22 (14), 2949-2955.
60. Kohri, M.; Nannichi, Y.; Kohma, H.; Abe, D.; Kojima, T.; Taniguchi, T.; Kishikawa, K. J. C.; Physicochemical, S. A.; Aspects, E., Size control of polydopamine nodules formed on polystyrene particles during dopamine polymerization with carboxylic acid-containing compounds for the fabrication of raspberry-like particles. 2014, 449, 114-120.
61. Zhao, C.; Zuo, F.; Liao, Z.; Qin, Z.; Du, S.; Zhao, Z. J. M. r. c., Mussel‐Inspired One‐Pot Synthesis of a Fluorescent and Water‐Soluble Polydopamine–Polyethyleneimine Copolymer. 2015, 36 (10), 909-915.
62. Zhang, Y.; Thingholm, B.; Goldie, K. N.; Ogaki, R.; Städler, B. J. L., Assembly of poly (dopamine) films mixed with a nonionic polymer. 2012, 28 (51), 17585-17592.
63. Pop-Georgievski, O.; Verreault, D.; Diesner, M.-O.; Proks, V.; Heissler, S.; Rypáček, F. e.; Koelsch, P. J. L., Nonfouling poly (ethylene oxide) layers end-tethered to polydopamine. 2012, 28 (40), 14273-14283.
64. Liu, Z.; Wu, W.; Liu, Y.; Qin, C.; Meng, M.; Jiang, Y.; Qiu, J.; Peng, J. J. S.; Technology, P., A mussel inspired highly stable graphene oxide membrane for efficient oil-in-water emulsions separation. 2018, 199, 37-46.
65. Fleming, M.; Bouwer, E.; Chen, K. L. J. E. E. S., Biofouling response of laboratory-scale polysulfone membranes modified with bioinspired polydopamine and silver nanoparticles. 2019, 36 (3), 335-343.
66. Subair, R.; Tripathi, B. P.; Formanek, P.; Simon, F.; Uhlmann, P.; Stamm, M. J. C. E. J., Polydopamine modified membranes with in situ synthesized gold nanoparticles for catalytic and environmental applications. 2016, 295, 358-369.
67. Shen, L.; Yang, Y.; Zhao, J.; Wang, X. J. D.; Treatment, W., High-performance nanofiltration membrane prepared by dopamine-assisted interfacial polymerization on PES nanofibrous scaffolds. 2016, 57 (21), 9549-9557.
68. Wei, Y.; Zhu, Y.; Jiang, Y. J. C. E. J., Photocatalytic self-cleaning carbon nitride nanotube intercalated reduced graphene oxide membranes for enhanced water purification. 2019, 356, 915-925.
69. Wang, B.; Liang, W.; Guo, Z.; Liu, W. J. C. S. R., Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature. 2015, 44 (1), 336-361.
70. Liu, M.; Wang, S.; Jiang, L. J. N. R. M., Nature-inspired superwettability systems. 2017, 2 (7), 1-17.
71. Wang, Z.; Elimelech, M.; Lin, S. J. E. s.; technology, Environmental applications of interfacial materials with special wettability. 2016, 50 (5), 2132-2150.
72. Wang, Z.; Ji, S.; Zhang, J.; Liu, Q.; He, F.; Peng, S.; Li, Y. J. J. o. M. C. A., Tannic acid encountering ovalbumin: a green and mild strategy for superhydrophilic and underwater superoleophobic modification of various hydrophobic membranes for oil/water separation. 2018, 6 (28), 13959-13967.
73. Wang, Z.; Ji, S.; He, F.; Cao, M.; Peng, S.; Li, Y. J. J. o. M. C. A., One-step transformation of highly hydrophobic membranes into superhydrophilic and underwater superoleophobic ones for high-efficiency separation of oil-in-water emulsions. 2018, 6 (8), 3391-3396.
74. Guan, Y.; Cheng, F.; Pan, Z. Superwetting Polymeric Three Dimensional (3D) Porous Materials for Oil/Water Separation: A Review Polymers (Basel) [Online], 2019. PubMed.
75. Zhang, L.; Wu, J.; Wang, Y.; Long, Y.; Zhao, N.; Xu, J. J. J. o. t. A. C. S., Combination of bioinspiration: a general route to superhydrophobic particles. 2012, 134 (24), 9879-9881.
76. Wang, B.; Liu, Y.; Zhang, Y.; Guo, Z.; Zhang, H.; Xin, J. H.; Zhang, L. J. A. M. I., Bioinspired superhydrophobic Fe3O4@ polydopamine@ Ag hybrid nanoparticles for liquid marble and oil spill. 2015, 2 (13), 1500234.
77. Xu, Z.; Miyazaki, K.; Hori, T. J. A. M. I., Dopamine‐Induced Superhydrophobic Melamine Foam for Oil/Water Separation. 2015, 2 (15), 1500255.
78. Barry, E.; Libera, J. A.; Mane, A. U.; Avila, J. R.; DeVitis, D.; Van Dyke, K.; Elam, J. W.; Darling, S. B. J. E. S. W. R.; Technology, Mitigating oil spills in the water column. 2018, 4 (1), 40-47.
79. Yang, F.; Dong, Y.; Guo, Z. J. C.; Physicochemical, S. A.; Aspects, E., Facile fabrication of core shell Fe3O4@ polydopamine microspheres with unique features of magnetic control behavior and special wettability. 2014, 463, 101-109.
80. Wang, H.; Wang, E.; Liu, Z.; Gao, D.; Yuan, R.; Sun, L.; Zhu, Y. J. J. o. M. C. A., A novel carbon nanotubes reinforced superhydrophobic and superoleophilic polyurethane sponge for selective oil–water separation through a chemical fabrication. 2015, 3 (1), 266-273.
81. Ge, J.; Ye, Y. D.; Yao, H. B.; Zhu, X.; Wang, X.; Wu, L.; Wang, J. L.; Ding, H.; Yong, N.; He, L. H. J. A. C., Pumping through porous hydrophobic/oleophilic materials: an alternative technology for oil spill remediation. 2014, 126 (14), 3686-3690.
82. Wang, Y.; Gong, X. J. J. o. M. C. A., Special oleophobic and hydrophilic surfaces: approaches, mechanisms, and applications. 2017, 5 (8), 3759-3773.
83. Ren, P.-F.; Yang, H.-C.; Jin, Y.-N.; Liang, H.-Q.; Wan, L.-S.; Xu, Z.-K. J. R. A., Underwater superoleophobic meshes fabricated by poly (sulfobetaine)/polydopamine co-deposition. 2015, 5 (59), 47592-47598.
84. Gao, S. J.; Zhu, Y. Z.; Zhang, F.; Jin, J. J. J. o. M. C. A., Superwetting polymer-decorated SWCNT composite ultrathin films for ultrafast separation of oil-in-water nanoemulsions. 2015, 3 (6), 2895-2902.
85. Cao, Y.; Zhang, X.; Tao, L.; Li, K.; Xue, Z.; Feng, L.; Wei, Y. J. A. a. m.; interfaces, Mussel-inspired chemistry and michael addition reaction for efficient oil/water separation. 2013, 5 (10), 4438-4442.
86. Li, X.; Yin, H.-M.; Su, K.; Zheng, G.-S.; Mao, C.-Y.; Liu, W.; Wang, P.; Zhang, Z.; Xu, J.-Z.; Li, Z.-M.; Liao, G.-Q., Polydopamine-Assisted Anchor of Chitosan onto Porous Composite Scaffolds for Accelerating Bone Regeneration. ACS Biomaterials Science & Engineering 2019, 5 (6), 2998-3006.
87. Farnad, N.; Farhadi, K.; Voelcker, N. H. J. W., Air,; Pollution, S., Polydopamine nanoparticles as a new and highly selective biosorbent for the removal of copper (II) ions from aqueous solutions. 2012, 223 (6), 3535-3544.
88. Fu, J.; Chen, Z.; Wang, M.; Liu, S.; Zhang, J.; Zhang, J.; Han, R.; Xu, Q., Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): kinetics, isotherm, thermodynamics and mechanism analysis. Chemical Engineering Journal 2015, 259, 53-61.
89. Zhao, Z.; Li, J.; Wen, T.; Shen, C.; Wang, X.; Xu, A., Surface functionalization graphene oxide by polydopamine for high affinity of radionuclides. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2015, 482, 258-266.
90. Zhang, X.; Huang, Q.; Liu, M.; Tian, J.; Zeng, G.; Li, Z.; Wang, K.; Zhang, Q.; Wan, Q.; Deng, F., Preparation of amine functionalized carbon nanotubes via a bioinspired strategy and their application in Cu2+ removal. Applied Surface Science 2015, 343, 19-27.
91. Dwivedi, A. D.; Sanandiya, N. D.; Singh, J. P.; Husnain, S. M.; Chae, K. H.; Hwang, D. S.; Chang, Y.-S., Tuning and characterizing nanocellulose interface for enhanced removal of dual-sorbate (AsV and CrVI) from water matrices. ACS Sustainable Chemistry & Engineering 2017, 5 (1), 518-528.
92. Yu, Y.; Shapter, J. G.; Popelka-Filcoff, R.; Bennett, J. W.; Ellis, A. V., Copper removal using bio-inspired polydopamine coated natural zeolites. Journal of hazardous materials 2014, 273, 174-182.
93. Li, C.; Qian, Z.-j.; Zhou, C.; Su, W.; Hong, P.; Liu, S.; He, L.; Chen, Z.; Ji, H., Mussel-inspired synthesis of polydopamine-functionalized calcium carbonate as reusable adsorbents for heavy metal ions. RSC Advances 2014, 4 (88), 47848-47852.
94. Gao, J.-K.; Hou, L.-A.; Zhang, G.-H.; Gu, P., Facile functionalized of SBA-15 via a biomimetic coating and its application in efficient removal of uranium ions from aqueous solution. Journal of Hazardous Materials 2015, 286, 325-333.
95. Li, B.; Wu, L.; Li, L.; Seeger, S.; Zhang, J.; Wang, A. J. A. a. m.; interfaces, Superwetting double-layer polyester materials for effective removal of both insoluble oils and soluble dyes in water. 2014, 6 (14), 11581-11588.
96. Zhang, J.; Wu, L.; Zhang, Y.; Wang, A. J. J. o. M. C. A., Mussel and fish scale-inspired underwater superoleophobic kapok membranes for continuous and simultaneous removal of insoluble oils and soluble dyes in water. 2015, 3 (36), 18475-18482.
97. Zhang, Q.; Cao, Y.; Liu, N.; Zhang, W.; Chen, Y.; Lin, X.; Tao, L.; Wei, Y.; Feng, L. J. A. M. I., A Facile Approach for Fabricating Dual‐Function Membrane: Simultaneously Removing Oil from Water and Adsorbing Water‐Soluble Proteins. 2016, 3 (16), 1600291.
98. Ratner, B. D.; Hoffman, A. S.; Schoen, F. J.; Lemons, J. E., Biomaterials science: an introduction to materials in medicine. Elsevier: 2004.
99. Chang, Y.; Shu, S.-H.; Shih, Y.-J.; Chu, C.-W.; Ruaan, R.-C.; Chen, W.-Y., Hemocompatible mixed-charge copolymer brushes of pseudozwitterionic surfaces resistant to nonspecific plasma protein fouling. Langmuir 2010, 26 (5), 3522-3530.
100. Zhang, Z.; Zhang, M.; Chen, S.; Horbett, T. A.; Ratner, B. D.; Jiang, S., Blood compatibility of surfaces with superlow protein adsorption. Biomaterials 2008, 29 (32), 4285-4291.
101. Rana, D.; Matsuura, T., Surface modifications for antifouling membranes. Chemical reviews 2010, 110 (4), 2448-2471.
102. Balakrishnan, B.; Kumar, D.; Yoshida, Y.; Jayakrishnan, A., Chemical modification of poly (vinyl chloride) resin using poly (ethylene glycol) to improve blood compatibility. Biomaterials 2005, 26 (17), 3495-3502.
103. Kim, S. H.; Kiick, K. L., Heparin-mimetic sulfated peptides with modulated affinities for heparin-binding peptides and growth factors. Peptides 2007, 28 (11), 2125-2136.
104. Christman, K. L.; Vázquez-Dorbatt, V.; Schopf, E.; Kolodziej, C. M.; Li, R. C.; Broyer, R. M.; Chen, Y.; Maynard, H. D., Nanoscale Growth Factor Patterns by Immobilization on a Heparin-Mimicking Polymer. Journal of the American Chemical Society 2008, 130 (49), 16585-16591.
105. Maynard, H. D.; Hubbell, J. A., Discovery of a sulfated tetrapeptide that binds to vascular endothelial growth factor. Acta Biomaterialia 2005, 1 (4), 451-459.
106. Mammadov, R.; Mammadov, B.; Toksoz, S.; Aydin, B.; Yagci, R.; Tekinay, A. B.; Guler, M. O., Heparin Mimetic Peptide Nanofibers Promote Angiogenesis. Biomacromolecules 2011, 12 (10), 3508-3519.
107. Yu, D.-G.; Jou, C.-H.; Lin, W.-C.; Yang, M.-C., Surface modification of poly(tetramethylene adipate-co-terephthalate) membrane via layer-by-layer assembly of chitosan and dextran sulfate polyelectrolyte multiplayer. Colloids and Surfaces B: Biointerfaces 2007, 54 (2), 222-229.
108. Li, Q. L.; Huang, N.; Chen, J.; Wan, G.; Zhao, A.; Chen, J.; Wang, J.; Yang, P.; Leng, Y. J. J. o. B. M. R. P. A. A. O. J. o. T. S. f. B., The Japanese Society for Biomaterials,; Biomaterials, T. A. S. f.; Biomaterials, t. K. S. f., Anticoagulant surface modification of titanium via layer‐by‐layer assembly of collagen and sulfated chitosan multilayers. 2009, 89 (3), 575-584.
109. Serizawa, T.; Yamaguchi, M.; Akashi, M., Alternating Bioactivity of Polymeric Layer-by-Layer Assemblies:  Anticoagulation vs Procoagulation of Human Blood. Biomacromolecules 2002, 3 (4), 724-731.
110. Fischer, M.; Vahdatzadeh, M.; Konradi, R.; Friedrichs, J.; Maitz, M. F.; Freudenberg, U.; Werner, C., Multilayer hydrogel coatings to combine hemocompatibility and antimicrobial activity. Biomaterials 2015, 56, 198-205.
111. Bartneck, M.; Heffels, K.-H.; Pan, Y.; Bovi, M.; Zwadlo-Klarwasser, G.; Groll, J., Inducing healing-like human primary macrophage phenotypes by 3D hydrogel coated nanofibres. Biomaterials 2012, 33 (16), 4136-4146.
112. Sask, K. N.; Zhitomirsky, I.; Berry, L. R.; Chan, A. K. C.; Brash, J. L., Surface modification with an antithrombin–heparin complex for anticoagulation: Studies on a model surface with gold as substrate. Acta Biomaterialia 2010, 6 (8), 2911-2919.
113. Lin, W. C.; Tseng, C. H.; Yang, M. C. J. M. b., In‐vitro hemocompatibility evaluation of a thermoplastic polyurethane membrane with surface‐immobilized water‐soluble chitosan and heparin. 2005, 5 (10), 1013-1021.
114. Ma, L.; Cheng, C.; Nie, C.; He, C.; Deng, J.; Wang, L.; Xia, Y.; Zhao, C. J. J. o. M. C. B., Anticoagulant sodium alginate sulfates and their mussel-inspired heparin-mimetic coatings. 2016, 4 (19), 3203-3215.
115. Huang, R.; Liu, Z.; Yan, B.; Li, Y.; Li, H.; Liu, D.; Wang, P.; Cui, F.; Shi, W., Layer-by-layer assembly of high negatively charged polycarbonate membranes with robust antifouling property for microalgae harvesting. Journal of Membrane Science 2020, 595, 117488.
116. Ma, L.; Huang, L.; Zhang, Y.; Zhao, L.; Xin, Q.; Ye, H.; Li, H., Hemocompatible poly(lactic acid) membranes prepared by immobilizing carboxylated graphene oxide via mussel-inspired method for hemodialysis. RSC Advances 2018, 8 (1), 153-161.
117. Zhang, W.; Liu, N.; Cao, Y.; Chen, Y.; Xu, L.; Lin, X.; Feng, L. J. A. M., A solvothermal route decorated on different substrates: controllable separation of an oil/water mixture to a stabilized nanoscale emulsion. 2015, 27 (45), 7349-7355.
118. Qu, M.; Ma, L.; Zhou, Y.; Zhao, Y.; Wang, J.; Zhang, Y.; Zhu, X.; Liu, X.; He, J., Durable and Recyclable Superhydrophilic–Superoleophobic Materials for Efficient Oil/Water Separation and Water-Soluble Dyes Removal. ACS Applied Nano Materials 2018, 1 (9), 5197-5209.
119. Yang, Y.; Li, Y.; Liu, G.; Pan, Q.; Wang, Z., A hindcast of the Bohai Bay oil spill during June to August 2011. Acta Oceanologica Sinica 2017, 36, 21-26.
120. Padaki, M.; Surya Murali, R.; Abdullah, M. S.; Misdan, N.; Moslehyani, A.; Kassim, M. A.; Hilal, N.; Ismail, A. F., Membrane technology enhancement in oil–water separation. A review. Desalination 2015, 357, 197-207.
121. Gupta, R. K.; Dunderdale, G. J.; England, M. W.; Hozumi, A., Oil/water separation techniques: a review of recent progresses and future directions. Journal of Materials Chemistry A 2017, 5 (31), 16025-16058.
122. Kwon, G.; Kota, A. K.; Li, Y.; Sohani, A.; Mabry, J. M.; Tuteja, A. J. A. m., On‐demand separation of oil‐water mixtures. 2012, 24 (27), 3666-3671.
123. Chan, Y.; Chong, M.; Law, C.; Hassell, D. G., A Review on Anaerobic–Aerobic Treatment of Industrial and Municipal Wastewater. Chemical Engineering Journal 2009, 155, 1-18.
124. Hong, S.; Na, Y. S.; Choi, S.; Song, I. T.; Kim, W. Y.; Lee, H. J. A. F. M., Non‐covalent self‐assembly and covalent polymerization co‐contribute to polydopamine formation. 2012, 22 (22), 4711-4717.
125. Suzuki, Y.; Maruyama, T., Removal of Emulsified Oil from Water by Coagulation and Foam Separation. Separation Science and Technology 2005, 40 (16), 3407-3418.
126. Gebreslase, G. A., Review on Membranes for the Filtration of Aqueous Based Solution: Oil in Water Emulsion. Journal of Membrane Science & Technology 2018, 08 (02).
127. Liu, M.; Wang, S.; Wei, Z.; Song, Y.; Jiang, L., Bioinspired Design of a Superoleophobic and Low Adhesive Water/Solid Interface. Advanced Materials 2009, 21 (6), 665-669.
128. Liu, X.; Zhou, J.; Xue, Z.; Gao, J.; Meng, J.; Wang, S.; Jiang, L., Clam's shell inspired high-energy inorganic coatings with underwater low adhesive superoleophobicity. Adv Mater 2012, 24 (25), 3401-5.
129. Gao, X.; Xu, L. P.; Xue, Z.; Feng, L.; Peng, J.; Wen, Y.; Wang, S.; Zhang, X., Dual-scaled porous nitrocellulose membranes with underwater superoleophobicity for highly efficient oil/water separation. Adv Mater 2014, 26 (11), 1771-5.
130. Ge, J.; Jin, Q.; Zong, D.; Yu, J.; Ding, B., Biomimetic Multilayer Nanofibrous Membranes with Elaborated Superwettability for Effective Purification of Emulsified Oily Wastewater. ACS Appl Mater Interfaces 2018, 10 (18), 16183-16192.
131. Li, J. J.; Zhou, Y. N.; Luo, Z. H., Smart Fiber Membrane for pH-Induced Oil/Water Separation. ACS Appl Mater Interfaces 2015, 7 (35), 19643-50.
132. Nady, N.; Schroën, K.; Franssen, M. C. R.; Mohy Eldin, M. S.; Zuilhof, H.; Boom, R. M., Laccase-catalyzed modification of PES membranes with 4-hydroxybenzoic acid and gallic acid. Journal of Membrane Science 2012, 394-395, 69-79.
133. Kim, H. J.; Choi, Y.-S.; Lim, M.-Y.; Jung, K. H.; Kim, D.-G.; Kim, J.-J.; Kang, H.; Lee, J.-C., Reverse osmosis nanocomposite membranes containing graphene oxides coated by tannic acid with chlorine-tolerant and antimicrobial properties. Journal of Membrane Science 2016, 514, 25-34.
134. Xie, A.; Chen, Y.; Cui, J.; Lang, J.; Li, C.; Yan, Y.; Dai, J., Facile and green fabrication of superhydrophobic sponge for continuous oil/water separation from harsh environments. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2019, 563, 120-129.
135. Zarghami, S.; Mohammadi, T.; Sadrzadeh, M., Preparation, characterization and fouling analysis of in-air hydrophilic/underwater oleophobic bio-inspired polydopamine coated PES membranes for oily wastewater treatment. Journal of Membrane Science 2019, 582, 402-413.
136. Zhang, G.; Zhan, Y.; He, S.; Zhang, L.; Zeng, G.; Chiao, Y. H., Construction of superhydrophilic/underwater superoleophobic polydopamine‐modified h‐BN/poly(arylene ether nitrile) composite membrane for stable oil‐water emulsions separation. Polymers for Advanced Technologies 2020, 31 (5), 1007-1018.
137. Song, Y.-Z.; Kong, X.; Yin, X.; Zhang, Y.; Sun, C.-C.; Yuan, J.-J.; Zhu, B.; Zhu, L.-P., Tannin-inspired superhydrophilic and underwater superoleophobic polypropylene membrane for effective oil/water emulsions separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2017, 522, 585-592.
138. Zhou, Q.; Yan, B.; Xing, T.; Chen, G., Fabrication of superhydrophobic caffeic acid/Fe@cotton fabric and its oil-water separation performance. Carbohydr Polym 2019, 203, 1-9.
139. Wu, D.; Huang, Y.; Yu, S.; Lawless, D.; Feng, X., Thin film composite nanofiltration membranes assembled layer-by-layer via interfacial polymerization from polyethylenimine and trimesoyl chloride. Journal of Membrane Science 2014, 472, 141-153.
140. Qiu, W.-Z.; Yang, H.-C.; Wan, L.-S.; Xu, Z.-K., Co-deposition of catechol/polyethyleneimine on porous membranes for efficient decolorization of dye water. Journal of Materials Chemistry A 2015, 3 (27), 14438-14444.
141. Liu, N.; Zhang, Q.; Qu, R.; Zhang, W.; Li, H.; Wei, Y.; Feng, L., Nanocomposite Deposited Membrane for Oil-in-Water Emulsion Separation with in Situ Removal of Anionic Dyes and Surfactants. Langmuir 2017, 33 (30), 7380-7388.
142. Chen, X.; Weibel, J. A.; Garimella, S. V., Continuous Oil–Water Separation Using Polydimethylsiloxane-Functionalized Melamine Sponge. Industrial & Engineering Chemistry Research 2016, 55 (12), 3596-3602.
143. Wang, X.; Li, M.; Shen, Y.; Yang, Y.; Feng, H.; Li, J., Facile preparation of loess-coated membranes for multifunctional surfactant-stabilized oil-in-water emulsion separation. Green Chemistry 2019, 21 (11), 3190-3199.
144. Wang, Z.-X.; Lau, C.-H.; Zhang, N.-Q.; Bai, Y.-P.; Shao, L. J. J. o. M. C. A., Mussel-inspired tailoring of membrane wettability for harsh water treatment. 2015, 3 (6), 2650-2657.
145. Yang, J.; Wang, H.; Tao, Z.; Liu, X.; Wang, Z.; Yue, R.; Cui, Z., 3D superhydrophobic sponge with a novel compression strategy for effective water-in-oil emulsion separation and its separation mechanism. Chemical Engineering Journal 2019, 359, 149-158.
146. Wu, Y.; Jia, S.; Wang, S.; Qing, Y.; Yan, N.; Wang, Q.; Meng, T., A facile and novel emulsion for efficient and convenient fabrication of durable superhydrophobic materials. Chemical Engineering Journal 2017, 328, 186-196.
147. Cao, Y.; Liu, N.; Zhang, W.; Feng, L.; Wei, Y., One-Step Coating toward Multifunctional Applications: Oil/Water Mixtures and Emulsions Separation and Contaminants Adsorption. ACS Applied Materials & Interfaces 2016, 8 (5), 3333-3339.
148. Iacomino, M.; Paez, J. I.; Avolio, R.; Carpentieri, A.; Panzella, L.; Falco, G.; Pizzo, E.; Errico, M. E.; Napolitano, A.; Del Campo, A.; d'Ischia, M., Multifunctional Thin Films and Coatings from Caffeic Acid and a Cross-Linking Diamine. Langmuir 2017, 33 (9), 2096-2102.
149. Wildermuth, S. R.; Young, E. E.; Were, L. M., Chlorogenic Acid Oxidation and Its Reaction with Sunflower Proteins to Form Green-Colored Complexes. Comprehensive Reviews in Food Science and Food Safety 2016, 15 (5), 829-843.
150. Cilliers, J. J.; Singleton, V. L. J. J. o. A.; Chemistry, F., Nonenzymic autoxidative phenolic browning reactions in a caffeic acid model system. 1989, 37 (4), 890-896.
151. Yabuta, G.; Koizumi, Y.; Namiki, K.; Hida, M.; Namiki, M., Structure of green pigment formed by the reaction of caffeic acid esters (or chlorogenic acid) with a primary amino compound. Biosci Biotechnol Biochem 2001, 65 (10), 2121-30.
152. Zhang, L.; Dong, D.; Shao, L.; Xia, Y.; Zeng, T.; Wang, Y., Cost-effective one-pot surface modified method to engineer a green superhydrophobic sponge for efficient oil/water mixtures as well as emulsions separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2019, 576, 43-54.
153. Cao, W.-T.; Liu, Y.-J.; Ma, M.-G.; Zhu, J.-F., Facile preparation of robust and superhydrophobic materials for self-cleaning and oil/water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2017, 529, 18-25.
154. d'Ischia, M.; Napolitano, A.; Pezzella, A.; Meredith, P.; Sarna, T., Chemical and structural diversity in eumelanins: unexplored bio-optoelectronic materials. Angew Chem Int Ed Engl 2009, 48 (22), 3914-21.
155. Ejaz Ahmed, F.; Lalia, B. S.; Hilal, N.; Hashaikeh, R., Underwater superoleophobic cellulose/electrospun PVDF–HFP membranes for efficient oil/water separation. Desalination 2014, 344, 48-54.
156. Yang, H. C.; Pi, J. K.; Liao, K. J.; Huang, H.; Wu, Q. Y.; Huang, X. J.; Xu, Z. K., Silica-decorated polypropylene microfiltration membranes with a mussel-inspired intermediate layer for oil-in-water emulsion separation. ACS Appl Mater Interfaces 2014, 6 (15), 12566-72.
157. Yue, X.; Zhang, T.; Yang, D.; Qiu, F.; Li, Z., Ultralong MnO2 Nanowire Enhanced Multiwall Carbon Nanotube Hybrid Membrane with Underwater Superoleophobicity for Efficient Oil-in-Water Emulsions Separation. Industrial & Engineering Chemistry Research 2018, 57 (31), 10439-10447.
158. Huang, T.; Zhang, L.; Chen, H.; Gao, C., Sol–gel fabrication of a non-laminated graphene oxide membrane for oil/water separation. Journal of Materials Chemistry A 2015, 3 (38), 19517-19524.
159. Wang, C. F.; Yang, S. Y.; Kuo, S. W., Eco-Friendly Superwetting Material for Highly Effective Separations of Oil/Water Mixtures and Oil-in-Water Emulsions. Sci Rep 2017, 7, 43053.
160. Oki, T.; Kanae, S., Global hydrological cycles and world water resources. science 2006, 313 (5790), 1068-1072.
161. Shannon, M. A.; Bohn, P. W.; Elimelech, M.; Georgiadis, J. G.; Marinas, B. J.; Mayes, A. M., Science and technology for water purification in the coming decades. Nanoscience and technology: a collection of reviews from nature Journals 2010, 337-346.
162. Ma, Q.; Cheng, H.; Fane, A. G.; Wang, R.; Zhang, H., Recent development of advanced materials with special wettability for selective oil/water separation. Small 2016, 12 (16), 2186-2202.
163. Wang, Y.; Gong, X., Special oleophobic and hydrophilic surfaces: approaches, mechanisms, and applications. Journal of Materials Chemistry A 2017, 5 (8), 3759-3773.
164. Teng, C.; Wang, S.; Lu, X.; Wang, J.; Ren, G.; Zhu, Y.; Jiang, L., Stable underwater superoleophobic and low adhesive polypyrrole nanowire mesh in highly corrosive environments. Soft Matter 2015, 11 (21), 4290-4294.
165. Zhang, X.; Sun, L.; Wang, Y.; Bian, F.; Wang, Y.; Zhao, Y., Multibioinspired slippery surfaces with wettable bump arrays for droplets pumping. Proceedings of the National Academy of Sciences 2019, 116 (42), 20863-20868.
166. Sun, L.; Bian, F.; Wang, Y.; Wang, Y.; Zhang, X.; Zhao, Y., Bioinspired programmable wettability arrays for droplets manipulation. Proceedings of the National Academy of Sciences 2020, 117 (9), 4527-4532.
167. Wen, N.; Miao, X.; Yang, X.; Long, M.; Deng, W.; Zhou, Q.; Deng, W., An alternative fabrication of underoil superhydrophobic or underwater superoleophobic stainless steel meshes for oil-water separation: Originating from one-step vapor deposition of polydimethylsiloxane. Separation and Purification Technology 2018, 204, 116-126.
168. Gu, J.; Xiao, P.; Zhang, L.; Lu, W.; Zhang, G.; Huang, Y.; Zhang, J.; Chen, T., Construction of superhydrophilic and under-water superoleophobic carbon-based membranes for water purification. RSC advances 2016, 6 (77), 73399-73403.
169. Xiang, Y.; Liu, F.; Xue, L., Under seawater superoleophobic PVDF membrane inspired by polydopamine for efficient oil/seawater separation. Journal of membrane science 2015, 476, 321-329.
170. Li, J.-J.; Zhou, Y.-N.; Luo, Z.-H., Polymeric materials with switchable superwettability for controllable oil/water separation: A comprehensive review. Progress in Polymer Science 2018, 87, 1-33.
171. Tang, Z.; Hess, D. W.; Breedveld, V., Fabrication of oleophobic paper with tunable hydrophilicity by treatment with non-fluorinated chemicals. Journal of Materials Chemistry A 2015, 3 (28), 14651-14660.
172. Rohrbach, K.; Li, Y.; Zhu, H.; Liu, Z.; Dai, J.; Andreasen, J.; Hu, L., A cellulose based hydrophilic, oleophobic hydrated filter for water/oil separation. Chemical Communications 2014, 50 (87), 13296-13299.
173. Xue, Z.; Wang, S.; Lin, L.; Chen, L.; Liu, M.; Feng, L.; Jiang, L., A novel superhydrophilic and underwater superoleophobic hydrogel‐coated mesh for oil/water separation. Advanced Materials 2011, 23 (37), 4270-4273.
174. Cai, Y.; Lu, Q.; Guo, X.; Wang, S.; Qiao, J.; Jiang, L., Salt‐tolerant superoleophobicity on alginate gel surfaces inspired by seaweed (saccharina japonica). Advanced Materials 2015, 27 (28), 4162-4168.
175. Xu, Y.; Li, Z.; Su, K.; Fan, T.; Cao, L., Mussel-inspired modification of PPS membrane to separate and remove the dyes from the wastewater. Chemical Engineering Journal 2018, 341, 371-382.
176. Zhang, Y. Q.; Yang, X. B.; Wang, Z. X.; Long, J.; Shao, L., Designing multifunctional 3D magnetic foam for effective insoluble oil separation and rapid selective dye removal for use in wastewater remediation. Journal of Materials Chemistry A 2017, 5 (16), 7316-7325.
177. Yuan, T.; Meng, J.; Hao, T.; Wang, Z.; Zhang, Y., A scalable method toward superhydrophilic and underwater superoleophobic PVDF membranes for effective oil/water emulsion separation. ACS applied materials & interfaces 2015, 7 (27), 14896-14904.
178. Li, F.; Bhushan, B.; Pan, Y.; Zhao, X., Bioinspired superoleophobic/superhydrophilic functionalized cotton for efficient separation of immiscible oil-water mixtures and oil-water emulsions. Journal of colloid and interface science 2019, 548, 123-130.
179. Cui, J.; Zhou, Z.; Xie, A.; Meng, M.; Cui, Y.; Liu, S.; Lu, J.; Zhou, S.; Yan, Y.; Dong, H., Bio-inspired fabrication of superhydrophilic nanocomposite membrane based on surface modification of SiO2 anchored by polydopamine towards effective oil-water emulsions separation. Separation and Purification Technology 2019, 209, 434-442.
180. Zeng, X.; Lin, J.; Cai, W.; Lu, Q.; Fu, S.; Li, J.; Yan, X.; Wen, X.; Zhou, C.; Zhang, M., Fabrication of superhydrophilic PVDF membranes by one-step modification with eco-friendly phytic acid and polyethyleneimine complex for oil-in-water emulsions separation. Chemosphere 2021, 264, 128395.
181. Zarghami, S.; Mohammadi, T.; Sadrzadeh, M.; Van der Bruggen, B., Superhydrophilic and underwater superoleophobic membranes-a review of synthesis methods. Progress in Polymer Science 2019, 98, 101166.
182. Ali, N.; Bilal, M.; Khan, A.; Ali, F.; Iqbal, H. M., Design, engineering and analytical perspectives of membrane materials with smart surfaces for efficient oil/water separation. TrAC Trends in Analytical Chemistry 2020, 127, 115902.
183. Shih, T.; Liu, N.; Zhang, Q.; Chen, Y.; Zhang, W.; Liu, Y.; Qu, R.; Wei, Y.; Feng, L., Preparation of DOPA-TA coated novel membrane for multifunctional water decontamination. Separation and Purification Technology 2018, 194, 135-140.
184. Zhu, X.; Zhu, L.; Li, H.; Xue, J.; Ma, C.; Yin, Y.; Qiao, X.; Sun, D.; Xue, Q., Multifunctional charged hydrogel nanofibrous membranes for metal ions contained emulsified oily wastewater purification. Journal of Membrane Science 2021, 621, 118950.
185. Lu, W.; Duan, C.; Zhang, Y.; Gao, K.; Dai, L.; Shen, M.; Wang, W.; Wang, J.; Ni, Y., Cellulose-based electrospun nanofiber membrane with core-sheath structure and robust photocatalytic activity for simultaneous and efficient oil emulsions separation, dye degradation and Cr (VI) reduction. Carbohydrate Polymers 2021, 258, 117676.
186. Li, J.-J.; Zhou, Y.-N.; Luo, Z.-H., Mussel-inspired V-shaped copolymer coating for intelligent oil/water separation. Chemical Engineering Journal 2017, 322, 693-701.
187. Chen, X.; Zhai, Y.; Han, X.; Liu, H.; Hu, Y., Surface chemistry-dominated underwater superoleophobic mesh with mussel-inspired zwitterionic coatings for oil/water separation and self-cleaning. Applied Surface Science 2019, 483, 399-408.
188. Wang, Z.; Jiang, X.; Cheng, X.; Lau, C. H.; Shao, L., Mussel-inspired hybrid coatings that transform membrane hydrophobicity into high hydrophilicity and underwater superoleophobicity for oil-in-water emulsion separation. ACS applied materials & interfaces 2015, 7 (18), 9534-9545.
189. Yang, H.-C.; Liao, K.-J.; Huang, H.; Wu, Q.-Y.; Wan, L.-S.; Xu, Z.-K., Mussel-inspired modification of a polymer membrane for ultra-high water permeability and oil-in-water emulsion separation. Journal of Materials Chemistry A 2014, 2 (26), 10225-10230.
190. Iacomino, M.; Paez, J. I.; Avolio, R.; Carpentieri, A.; Panzella, L.; Falco, G.; Pizzo, E.; Errico, M. E.; Napolitano, A.; Del Campo, A., Multifunctional thin films and coatings from caffeic acid and a cross-linking diamine. Langmuir 2017, 33 (9), 2096-2102.
191. Suárez-García, S.; Sedó, J.; Saiz-Poseu, J.; Ruiz-Molina, D., Copolymerization of a catechol and a diamine as a versatile polydopamine-like platform for surface functionalization: The case of a hydrophobic coating. Biomimetics 2017, 2 (4), 22.
192. He, Y.; Chen, Q.; Zhang, Y.; Zhao, Y.; Chen, L., H2O2-Triggered Rapid Deposition of Poly (caffeic acid) Coatings: A Mechanism-Based Entry to Versatile and High-Efficient Molecular Separation. ACS Applied Materials & Interfaces 2020, 12 (46), 52104-52115.
193. Lee, J. Y.; Aguilar, L. E.; Park, C. H.; Kim, C. S., UV light assisted coating method of polyphenol caffeic acid and mediated immobilization of metallic silver particles for antibacterial implant surface modification. Polymers 2019, 11 (7), 1200.
194. Wang, H.; Gao, F.; Ren, R.; Wang, Z.; Yue, R.; Wei, J.; Wang, X.; Kong, Z.; Zhang, H.; Zhang, X., Caffeic acid polymer rapidly modified sponge with excellent anti-oil-adhesion property and efficient separation of oil-in-water emulsions. Journal of Hazardous Materials 2021, 404, 124197.
195. Krishnamoorthi, R.; Anbazhagan, R.; Tsai, H.-C.; Wang, C.-F.; Lai, J.-Y., Preparation of caffeic acid-polyethyleneimine modified sponge for emulsion separation and dye adsorption. Journal of the Taiwan Institute of Chemical Engineers 2021, 118, 325-333.
196. Jeon, J. R.; Baldrian, P.; Murugesan, K.; Chang, Y. S., Laccase‐catalysed oxidations of naturally occurring phenols: from in vivo biosynthetic pathways to green synthetic applications. Microbial biotechnology 2012, 5 (3), 318-332.
197. Kudanga, T.; Nemadziva, B.; Le Roes-Hill, M., Laccase catalysis for the synthesis of bioactive compounds. Applied microbiology and biotechnology 2017, 101 (1), 13-33.
198. Su, J.; Fu, J.; Wang, Q.; Silva, C.; Cavaco-Paulo, A., Laccase: a green catalyst for the biosynthesis of poly-phenols. Critical reviews in biotechnology 2018, 38 (2), 294-307.
199. Nemadziva, B.; Le Roes-Hill, M.; Koorbanally, N.; Kudanga, T., Small laccase-catalyzed synthesis of a caffeic acid dimer with high antioxidant capacity. Process Biochemistry 2018, 69, 99-105.
200. Cusola, O.; Valls, C.; Vidal, T.; Roncero, M. B., Using electrochemical methods to study the kinetics of laccase-catalyzed oxidation of phenols. Industrial & Engineering Chemistry Research 2018, 57 (6), 2434-2439.
201. Llevot, A.; Grau, E.; Carlotti, S.; Grelier, S.; Cramail, H., Selective laccase-catalyzed dimerization of phenolic compounds derived from lignin: Towards original symmetrical bio-based (bis) aromatic monomers. Journal of Molecular Catalysis B: Enzymatic 2016, 125, 34-41.
202. Wu, F.; Su, L.; Yu, P.; Mao, L., Role of organic solvents in immobilizing fungus laccase on single-walled carbon nanotubes for improved current response in direct bioelectrocatalysis. Journal of the American Chemical Society 2017, 139 (4), 1565-1574.
203. Liu, R.-L.; Mao, S.; Wang, Y.; Wang, L.; Ge, Y.-H.; Xu, X.-Y.; Fu, Q., A mussel-inspired hybrid copolymer adhered to chitosan-coated micro-sized carbon fiber aerogels for highly efficient nanoparticle scavenging. Environmental Science: Nano 2017, 4 (11), 2164-2174.
204. Guo, D.-M.; An, Q.-D.; Xiao, Z.-Y.; Zhai, S.-R.; Yang, D.-J., Efficient removal of Pb (II), Cr (VI) and organic dyes by polydopamine modified chitosan aerogels. Carbohydrate polymers 2018, 202, 306-314.
205. Lv, N.; Wang, X.; Peng, S.; Luo, L.; Zhou, R., Superhydrophobic/superoleophilic cotton-oil absorbent: preparation and its application in oil/water separation. RSC advances 2018, 8 (53), 30257-30264.
206. Chaudhary, J. P.; Vadodariya, N.; Nataraj, S. K.; Meena, R., Chitosan-based aerogel membrane for robust oil-in-water emulsion separation. ACS applied materials & interfaces 2015, 7 (44), 24957-24962.
207. Wang, Y.; Zhang, Y.; Hou, C.; Liu, M., Mussel-inspired synthesis of magnetic polydopamine–chitosan nanoparticles as biosorbent for dyes and metals removal. Journal of the Taiwan Institute of Chemical Engineers 2016, 61, 292-298.
208. Hadjittofi, L.; Prodromou, M.; Pashalidis, I., Activated biochar derived from cactus fibres--preparation, characterization and application on Cu(II) removal from aqueous solutions. Bioresource technology 2014, 159, 460-4.
209. Langmuir, I., THE ADSORPTION OF GASES ON PLANE SURFACES OF GLASS, MICA AND PLATINUM. Journal of the American Chemical Society 1918, 40 (9), 1361-1403.
210. Freundlich, H. J. J. P. C., Over the adsorption in solution. 1906, 57 (385471), 1100-1107.
211. Gore, P. M.; Kandasubramanian, B., Heterogeneous wettable cotton based superhydrophobic Janus biofabric engineered with PLA/functionalized-organoclay microfibers for efficient oil–water separation. Journal of Materials Chemistry A 2018, 6 (17), 7457-7479.
212. Krishnamoorthi, R.; Anbazhagan, R.; Tsai, H.-C.; Wang, C.-F.; Lai, J.-Y., Biodegradable, superwettable caffeic acid/chitosan polymer coated cotton fibers for the simultaneous removal of oils, dyes, and metal ions from water. Chemical Engineering Journal 2022, 427, 131920.
213. Aguilar, L. E.; Lee, J. Y.; Park, C. H.; Kim, C. S., Biomedical grade stainless steel coating of polycaffeic acid via combined oxidative and ultraviolet light-assisted polymerization process for bioactive implant application. Polymers 2019, 11 (4), 584.
214. Božič, M.; Gorgieva, S.; Kokol, V., Laccase-mediated functionalization of chitosan by caffeic and gallic acids for modulating antioxidant and antimicrobial properties. Carbohydrate Polymers 2012, 87 (4), 2388-2398.
215. Zhao, S.; Tao, Z.; Chen, L.; Han, M.; Zhao, B.; Tian, X.; Wang, L.; Meng, F., An antifouling catechol/chitosan-modified polyvinylidene fluoride membrane for sustainable oil-in-water emulsions separation. Frontiers of Environmental Science & Engineering 2021, 15 (4), 1-11.
216. Zhang, G.; Li, Y.; Gao, A.; Zhang, Q.; Cui, J.; Zhao, S.; Zhan, X.; Yan, Y., Bio-inspired underwater superoleophobic PVDF membranes for highly-efficient simultaneous removal of insoluble emulsified oils and soluble anionic dyes. Chemical Engineering Journal 2019, 369, 576-587.
217. Sousa, F.; Guebitz, G. M.; Kokol, V., Antimicrobial and antioxidant properties of chitosan enzymatically functionalized with flavonoids. Process Biochemistry 2009, 44 (7), 749-756.
218. Payne, G. F.; Chaubal, M. V.; Barbari, T. A., Enzyme-catalysed polymer modification: reaction of phenolic compounds with chitosan films. Polymer 1996, 37 (20), 4643-4648.
219. Wang, Q.; Yu, M.; Chen, G.; Chen, Q.; Tai, J., Facile Fabrication of Superhydrophobic/Superoleophilic Cotton for Highly Efficient Oil/Water Separation. 2016 2016, 12 (1), 12.
220. Wang, Z.; Ji, S.; He, F.; Cao, M.; Peng, S.; Li, Y., One-step transformation of highly hydrophobic membranes into superhydrophilic and underwater superoleophobic ones for high-efficiency separation of oil-in-water emulsions. Journal of Materials Chemistry A 2018, 6 (8), 3391-3396.
221. Kuzmenko, V.; Wang, N.; Haque, M.; Naboka, O.; Flygare, M.; Svensson, K.; Gatenholm, P.; Liu, J.; Enoksson, P., Cellulose-derived carbon nanofibers/graphene composite electrodes for powerful compact supercapacitors. RSC Advances 2017, 7 (73), 45968-45977.
222. Jiao, C.; Zhang, Z.; Tao, J.; Zhang, D.; Chen, Y.; Lin, H., Synthesis of a poly(amidoxime-hydroxamic acid) cellulose derivative and its application in heavy metal ion removal. RSC Advances 2017, 7 (44), 27787-27795.
223. Li, S.; Hu, C.; Peng, Y.; Chen, Z., One-step scalable synthesis of honeycomb-like g-C3N4 with broad sub-bandgap absorption for superior visible-light-driven photocatalytic hydrogen evolution. RSC Advances 2019, 9 (56), 32674-32682.
224. Daksa Ejeta, D.; Wang, C.-F.; Kuo, S.-W.; Chen, J.-K.; Tsai, H.-C.; Hung, W.-S.; Hu, C.-C.; Lai, J.-Y., Preparation of superhydrophobic and superoleophilic cotton-based material for extremely high flux water-in-oil emulsion separation. Chemical Engineering Journal 2020, 402, 126289.
225. Yang, S.; Chen, L.; Liu, S.; Hou, W.; Zhu, J.; Zhang, Q.; Zhao, P., Robust Bifunctional Compressed Carbon Foam for Highly Effective Oil/Water Emulsion Separation. ACS Applied Materials & Interfaces 2020, 12 (40), 44952-44960.
226. Hadjittofi, L.; Prodromou, M.; Pashalidis, I., Activated biochar derived from cactus fibres – Preparation, characterization and application on Cu(II) removal from aqueous solutions. Bioresource Technology 2014, 159, 460-464.
227. Maleki, A.; Mohammad, M.; Emdadi, Z.; Asim, N.; Azizi, M.; Safaei, J., Adsorbent materials based on a geopolymer paste for dye removal from aqueous solutions. Arabian Journal of Chemistry 2020, 13 (1), 3017-3025.
228. Choi, H. Y.; Bae, J. H.; Hasegawa, Y.; An, S.; Kim, I. S.; Lee, H.; Kim, M., Thiol-functionalized cellulose nanofiber membranes for the effective adsorption of heavy metal ions in water. Carbohydr Polym 2020, 234, 115881.
229. Yang, H.-C.; Pi, J.-K.; Liao, K.-J.; Huang, H.; Wu, Q.-Y.; Huang, X.-J.; Xu, Z.-K., Silica-Decorated Polypropylene Microfiltration Membranes with a Mussel-Inspired Intermediate Layer for Oil-in-Water Emulsion Separation. ACS Applied Materials & Interfaces 2014, 6 (15), 12566-12572.
230. Chaudhary, J. P.; Vadodariya, N.; Nataraj, S. K.; Meena, R., Chitosan-Based Aerogel Membrane for Robust Oil-in-Water Emulsion Separation. ACS Appl Mater Interfaces 2015, 7 (44), 24957-62.
231. Zhou, L.; He, Y.; Shi, H.; Xiao, G.; Wang, S.; Li, Z.; Chen, J., One-pot route to synthesize HNTs@PVDF membrane for rapid and effective separation of emulsion-oil and dyes from waste water. J Hazard Mater 2019, 380, 120865.
232. Gao, S. J.; Shi, Z.; Zhang, W. B.; Zhang, F.; Jin, J., Photoinduced Superwetting Single-Walled Carbon Nanotube/TiO2 Ultrathin Network Films for Ultrafast Separation of Oil-in-Water Emulsions. ACS Nano 2014, 8 (6), 6344-6352.
233. Yang, S.; Yin, K.; Wu, J.; Wu, Z.; Chu, D.; He, J.; Duan, J. A., Ultrafast nano-structuring of superwetting Ti foam with robust antifouling and stability towards efficient oil-in-water emulsion separation. Nanoscale 2019, 11 (38), 17607-17614.
234. Zhu, Y.; Zhang, F.; Wang, D.; Pei, X. F.; Zhang, W.; Jin, J., A novel zwitterionic polyelectrolyte grafted PVDF membrane for thoroughly separating oil from water with ultrahigh efficiency. Journal of Materials Chemistry A 2013, 1 (18), 5758-5765.
235. Wang, Y.; Feng, Y.; Zhang, M.; Huang, C.; Yao, J., A green strategy for preparing durable underwater superoleophobic calcium alginate hydrogel coated-meshes for oil/water separation. Int J Biol Macromol 2019, 136, 13-19.
236. Chen, Q.; Yu, Z.; Li, F.; Yang, Y.; Pan, Y.; Peng, Y.; Yang, X.; Zeng, G., A novel photocatalytic membrane decorated with RGO‐Ag‐TiO2 for dye degradation and oil–water emulsion separation. Journal of Chemical Technology & Biotechnology 2017, 93 (3), 761-775.
237. Yan, L.; Li, P.; Zhou, W.; Wang, Z.; Fan, X.; Chen, M.; Fang, Y.; Liu, H., Shrimp Shell-Inspired Antifouling Chitin Nanofibrous Membrane for Efficient Oil/Water Emulsion Separation with In Situ Removal of Heavy Metal Ions. ACS Sustainable Chemistry & Engineering 2019, 7 (2), 2064-2072.
238. Ao, C.; Zhao, J.; Li, Q.; Zhang, J.; Huang, B.; Wang, Q.; Gai, J.; Chen, Z.; Zhang, W.; Lu, C. J. C. P., Biodegradable all-cellulose composite membranes for simultaneous oil/water separation and dye removal from water. 2020, 250, 116872.
239. Wang, X.; Yu, P.; Zhang, K.; Wu, M.; Wu, Q.; Liu, J.; Yang, J.; Zhang, J. J. P., Robust and durable polymer grafted cotton fabrics for sequential oil/water separation and heavy metal ions removal based on surface initiated ATRP. 2020, 210, 123002.
240. Shi, J.; Sharma-Shivappa, R. R.; Chinn, M.; Howell, N., Effect of microbial pretreatment on enzymatic hydrolysis and fermentation of cotton stalks for ethanol production. Biomass and Bioenergy 2009, 33 (1), 88-96.
241. Fukushima, K.; Abbate, C.; Tabuani, D.; Gennari, M.; Camino, G., Biodegradation of poly(lactic acid) and its nanocomposites. Polymer Degradation and Stability 2009, 94 (10), 1646-1655.
242. Chen, S.-H.; Chang, Y.; Lee, K.-R.; Wei, T.-C.; Higuchi, A.; Ho, F.-M.; Tsou, C.-C.; Ho, H.-T.; Lai, J.-Y., Hemocompatible control of sulfobetaine-grafted polypropylene fibrous membranes in human whole blood via plasma-induced surface zwitterionization. Langmuir 2012, 28 (51), 17733-17742.
243. Chang, Y.; Liao, S.-C.; Higuchi, A.; Ruaan, R.-C.; Chu, C.-W.; Chen, W.-Y., A Highly Stable Nonbiofouling Surface with Well-Packed Grafted Zwitterionic Polysulfobetaine for Plasma Protein Repulsion. Langmuir 2008, 24 (10), 5453-5458.
244. Chang, Y.; Shih, Y.-J.; Ko, C.-Y.; Jhong, J.-F.; Liu, Y.-L.; Wei, T.-C., Hemocompatibility of Poly(vinylidene fluoride) Membrane Grafted with Network-Like and Brush-Like Antifouling Layer Controlled via Plasma-Induced Surface PEGylation. Langmuir 2011, 27 (9), 5445-5455.
245. Chang, Y.; Cheng, T.-Y.; Shih, Y.-J.; Lee, K.-R.; Lai, J.-Y., Biofouling-resistance expanded poly (tetrafluoroethylene) membrane with a hydrogel-like layer of surface-immobilized poly (ethylene glycol) methacrylate for human plasma protein repulsions. Journal of membrane science 2008, 323 (1), 77-84.
246. Wang, P.; Tan, K.; Kang, E.; Neoh, K., Synthesis, characterization and anti-foulingproperties of poly (ethylene glycol) grafted poly (vinylidenefluoride) copolymer membranes. Journal of Materials Chemistry 2001, 11 (3), 783-789.
247. Wijesekara, I.; Pangestuti, R.; Kim, S.-K., Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydrate Polymers 2011, 84 (1), 14-21.
248. Mao, W.; Li, H.; Li, Y.; Zhang, H.; Qi, X.; Sun, H.; Chen, Y.; Guo, S., Chemical characteristic and anticoagulant activity of the sulfated polysaccharide isolated from Monostroma latissimum (Chlorophyta). International Journal of Biological Macromolecules 2009, 44 (1), 70-74.
249. Wolfrom, M. L.; Shen, T. M.; Summers, C. G., SULFATED NITROGENOUS POLYSACCHARIDES AND THEIR ANTICOAGULANT ACTIVITY1. Journal of the American Chemical Society 1953, 75 (6), 1519-1519.
250. Hu, T.; Liu, D.; Chen, Y.; Wu, J.; Wang, S., Antioxidant activity of sulfated polysaccharide fractions extracted from Undaria pinnitafida in vitro. International Journal of Biological Macromolecules 2010, 46 (2), 193-198.
251. Rocha de Souza, M. C.; Marques, C. T.; Guerra Dore, C. M.; Ferreira da Silva, F. R.; Oliveira Rocha, H. A.; Leite, E. L., Antioxidant activities of sulfated polysaccharides from brown and red seaweeds. Journal of Applied Phycology 2007, 19 (2), 153-160.
252. Chaidedgumjorn, A.; Toyoda, H.; Woo, E. R.; Lee, K. B.; Kim, Y. S.; Toida, T.; Imanari, T., Effect of (1→3)- and (1→4)-linkages of fully sulfated polysaccharides on their anticoagulant activity. Carbohydrate Research 2002, 337 (10), 925-933.
253. de Kort, M.; Buijsman, R. C.; van Boeckel, C. A. A., Synthetic heparin derivatives as new anticoagulant drugs. Drug Discovery Today 2005, 10 (11), 769-779.
254. Guerrini, M.; Elli, S.; Gaudesi, D.; Torri, G.; Casu, B.; Mourier, P.; Herman, F.; Boudier, C.; Lorenz, M.; Viskov, C., Effects on Molecular Conformation and Anticoagulant Activities of 1,6-Anhydrosugars at the Reducing Terminal of Antithrombin-Binding Octasaccharides Isolated from Low-Molecular-Weight Heparin Enoxaparin. Journal of Medicinal Chemistry 2010, 53 (22), 8030-8040.
255. You, I.; Kang, S. M.; Byun, Y.; Lee, H., Enhancement of Blood Compatibility of Poly(urethane) Substrates by Mussel-Inspired Adhesive Heparin Coating. Bioconjugate Chemistry 2011, 22 (7), 1264-1269.
256. Nie, C.; Ma, L.; Xia, Y.; He, C.; Deng, J.; Wang, L.; Cheng, C.; Sun, S.; Zhao, C., Novel heparin-mimicking polymer brush grafted carbon nanotube/PES composite membranes for safe and efficient blood purification. Journal of Membrane Science 2015, 475, 455-468.
257. Cheng, C.; Sun, S.; Zhao, C., Progress in heparin and heparin-like/mimicking polymer-functionalized biomedical membranes. Journal of Materials Chemistry B 2014, 2 (44), 7649-7672.
258. Ma, L.; Qin, H.; Cheng, C.; Xia, Y.; He, C.; Nie, C.; Wang, L.; Zhao, C., Mussel-inspired self-coating at macro-interface with improved biocompatibility and bioactivity via dopamine grafted heparin-like polymers and heparin. Journal of Materials Chemistry B 2014, 2 (4), 363-375.
259. Liang, Y.; Kiick, K. L., Heparin-functionalized polymeric biomaterials in tissue engineering and drug delivery applications. Acta Biomaterialia 2014, 10 (4), 1588-1600.
260. Zhao, L.; Liu, M.; Wang, J.; Zhai, G. J. C. p., Chondroitin sulfate-based nanocarriers for drug/gene delivery. 2015, 133, 391-399.
261. Sharma, L. J. O.; cartilage, Osteoarthritis year in review 2015: clinical. 2016, 24 (1), 36-48.
262. Rivera, F.; Bertignone, L.; Grandi, G.; Camisassa, R.; Comaschi, G.; Trentini, D.; Zanone, M.; Teppex, G.; Vasario, G.; Fortina, G. J. J. o. O.; Traumatology, Effectiveness of intra-articular injections of sodium hyaluronate-chondroitin sulfate in knee osteoarthritis: a multicenter prospective study. 2016, 17 (1), 27-33.
263. Bougatef, H.; Krichen, F.; Capitani, F.; Amor, I. B.; Gargouri, J.; Maccari, F.; Mantovani, V.; Galeotti, F.; Volpi, N.; Bougatef, A.; Sila, A., Purification, compositional analysis, and anticoagulant capacity of chondroitin sulfate/dermatan sulfate from bone of corb (Sciaena umbra). International Journal of Biological Macromolecules 2019, 134, 405-412.
264. Wu, M.; Wen, D.; Gao, N.; Xiao, C.; Yang, L.; Xu, L.; Lian, W.; Peng, W.; Jiang, J.; Zhao, J., Anticoagulant and antithrombotic evaluation of native fucosylated chondroitin sulfates and their derivatives as selective inhibitors of intrinsic factor Xase. European Journal of Medicinal Chemistry 2015, 92, 257-269.
265. Wu, M.; Wen, D.; Gao, N.; Xiao, C.; Yang, L.; Xu, L.; Lian, W.; Peng, W.; Jiang, J.; Zhao, J., Anticoagulant and antithrombotic evaluation of native fucosylated chondroitin sulfates and their derivatives as selective inhibitors of intrinsic factor Xase. Eur J Med Chem 2015, 92, 257-69.
266. Zhou, J.; Lin, Y.; Lv, J.; Zhou, L.; Hu, H.; Yu, L.; Zhang, Q.; Yang, H.; Luo, Z. J. B., biomimetic; nanobiomaterials, Grafting with chondroitin sulfate on poly(vinyl alcohol) to improve antifouling property. 2019, 1-12.
267. Yuan, H.-h.; Xue, J.; Qian, B.; Chen, H.; Zhu, Y.; Lan, M. J. A. S. S., Preparation and antifouling property of polyurethane film modified by chondroitin sulfate. 2017, 394, 403-413.
268. Shawon, J.; Sung, C. J. J. o. m. s., Electrospinning of polycarbonate nanofibers with solvent mixtures THF and DMF. 2004, 39 (14), 4605-4613.
269. Choi, J.-H.; Park, S.-K.; Ng, H.-Y. J. S.; technology, p., Membrane fouling in a submerged membrane bioreactor using track-etched and phase-inversed porous membranes. 2009, 65 (2), 184-192.
270. Pinto, A. J.; Xi, C.; Raskin, L. J. E. s.; technology, Bacterial community structure in the drinking water microbiome is governed by filtration processes. 2012, 46 (16), 8851-8859.
271. Iacomino, M.; Paez, J. I.; Avolio, R.; Carpentieri, A.; Panzella, L.; Falco, G.; Pizzo, E.; Errico, M. E.; Napolitano, A.; del Campo, A.; d’Ischia, M., Multifunctional Thin Films and Coatings from Caffeic Acid and a Cross-Linking Diamine. Langmuir 2017, 33 (9), 2096-2102.
272. Gülçin, İ., Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicology 2006, 217 (2), 213-220.
273. Kuda, T.; Kunii, T.; Goto, H.; Suzuki, T.; Yano, T., Varieties of antioxidant and antibacterial properties of Ecklonia stolonifera and Ecklonia kurome products harvested and processed in the Noto peninsula, Japan. Food Chemistry 2007, 103 (3), 900-905.
274. Jayanthi, R.; Subash, P., Antioxidant Effect of Caffeic Acid on Oxytetracycline Induced Lipid Peroxidation in Albino Rats. Indian Journal of Clinical Biochemistry 2010, 25 (4), 371-375.
275. Krishnamoorthi, R.; Anbazhagan, R.; Tsai, H.-C.; Wang, C.-F.; Lai, J.-Y. J. C. E. J., Biodegradable, superwettable caffeic acid/chitosan polymer coated cotton fibers for the simultaneous removal of oils, dyes, and metal ions from water. 2022, 427, 131920.
276. Li, T.; Song, X.; Weng, C.; Wang, X.; Sun, L.; Gong, X.; Yang, L.; Chen, C., Self-crosslinking and injectable chondroitin sulfate/pullulan hydrogel for cartilage tissue engineering. Applied Materials Today 2018, 10, 173-183.
277. Rarima, R.; Asaletha, R.; Unnikrishnan, G., Schiff base-assisted surface patterning of polylactide–zinc oxide films: generation, characterization and biocompatibility evaluation. Journal of Materials Science 2018, 53 (14), 9943-9957.
278. Liu, M.; Du, H.; Zhai, G., Self-assembled nanoparticles based on chondroitin sulfate-deoxycholic acid conjugates for docetaxel delivery: Effect of degree of substitution of deoxycholic acid. Colloids and Surfaces B: Biointerfaces 2016, 146, 235-244.
279. Kim, K.; Fane, A.; Nyström, M.; Pihlajamaki, A., Chemical and electrical characterization of virgin and protein-fouled polycarbonate track-etched membranes by FTIR and streaming-potential measurements. Journal of membrane science 1997, 134 (2), 199-208.
280. Ong, C. S.; Lay, H. T.; Tamilselvam, N. R.; Chew, J. W., Cross-Linked Polycarbonate Microfiltration Membranes with Improved Solvent Resistance. Langmuir 2021, 37 (13), 4025-4032.
281. Tóth, I. Y.; Illés, E.; Szekeres, M.; Zupkó, I.; Turcu, R.; Tombácz, E., Chondroitin-Sulfate-A-Coated Magnetite Nanoparticles: Synthesis, Characterization and Testing to Predict Their Colloidal Behavior in Biological Milieu. 2019, 20 (17), 4096.
282. Liu, Y.; Ai, K.; Lu, L., Polydopamine and Its Derivative Materials: Synthesis and Promising Applications in Energy, Environmental, and Biomedical Fields. Chemical Reviews 2014, 114 (9), 5057-5115.
283. Diagne, F.; Malaisamy, R.; Boddie, V.; Holbrook, R. D.; Eribo, B.; Jones, K. L., Polyelectrolyte and silver nanoparticle modification of microfiltration membranes to mitigate organic and bacterial fouling. Environmental science & technology 2012, 46 (7), 4025-4033.
284. Ishihara, K.; Fukumoto, K.; Iwasaki, Y.; Nakabayashi, N., Modification of polysulfone with phospholipid polymer for improvement of the blood compatibility. Part 2. Protein adsorption and platelet adhesion. Biomaterials 1999, 20 (17), 1553-9.
285. Zhao, C.; Li, X.; Li, L.; Cheng, G.; Gong, X.; Zheng, J., Dual Functionality of Antimicrobial and Antifouling of Poly(N-hydroxyethylacrylamide)/Salicylate Hydrogels. Langmuir 2013, 29 (5), 1517-1524.

無法下載圖示 全文公開日期 2027/04/07 (校內網路)
全文公開日期 2027/04/07 (校外網路)
全文公開日期 2032/04/07 (國家圖書館:臺灣博碩士論文系統)
QR CODE