簡易檢索 / 詳目顯示

研究生: 謝素蘭
Su-Lan Hsieh
論文名稱: 應用Fuller級配曲線探討水泥基質材料之巨微觀性質
The study on macro-micro property of cementitious material by used Fuller’s gradation curve
指導教授: 黃兆龍
Chao-Lung Hwang
口試委員: 彭耀南
none
顏聰
none
蘇南
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 311
中文關鍵詞: Fuller級配曲線配比模式水泥基質材料膠結漿質裹漿厚度耐久性
外文關鍵詞: Fuller’s gradation curve, Cementious material, Cementitious quantity, Coating thickness, Durability
相關次數: 點閱:195下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

應用Fuller 級配曲線探討水泥基質材料之巨微觀性質

研 究 生:謝素蘭
指導教授:黃兆龍 博士
時 間:97年12月

論文摘要

自從全球積極限制CO2的排放量,以降低大氣層暖化衝擊的熱潮下,水泥基質材料必須降低水泥用量,同時提高耐久性,使工程結構能符合世界發展趨勢,達到永續綠建材的目標。本文主要應用Fuller級配曲線模擬水泥基質材料之固體顆粒緻密堆積分佈曲線,以求得最少空隙量Vv,並設計不同膠結漿質與量之水泥基質材料,分別量測工作性、單位重及水化熱等新拌性質,抗壓強度、水泥強度效益、超音波速、表面電阻、氯離子電滲量和硫酸鹽侵蝕等硬固性質,以及SEM、MIP和3D立體表面結構等微觀結構,藉以探討水泥基質材料巨微觀性質。試驗結果顯示,水泥基質材料可藉由強塑劑之用量而改變其工作性;而Fuller級配曲線配比模式設計之水泥基質材料,膠結漿質愈佳,水泥裹漿厚度愈厚時,混凝土早期強度愈高,但晚期強度反而水泥漿用量越少,其硬固性質愈佳。在相同膠結漿「質」條件下,水泥強度效益優於ACI設計法約2.55倍以上,氯離子電滲量低約2.94~7.15倍;耐久性指摽試驗中,則顯示固體粒料堆積愈緻密,膠結料組成愈多,表面電阻及抵抗氯離子滲透能力較佳。

關鍵字:Fuller級配曲線配比模式, 水泥基質材料, 膠結漿質, 裹漿厚度, 耐久性


The study on macro-micro property of cementitious material by used Fuller’s gradation curve

Graduate Student: Su-Lan Hsieh
Thesis Advisor: Chao-Lung Hwang

Abstract

Since global consideration of CO2 emission, energy conservation and structure sustainability, the concrete design nowadays should both reduce the cement content and improve durability. This paper mainly discussed the macro-micro properties of cementitious material. The Fuller’s gradation curve is applied to enable fully packing with all solid particles. Then, the least void volume of paste (Vv) can be obtained. Mixtures with cementitious material of different quality and quantity were designed. Such fresh properties as workability, unit weight and heat of hydration were measured, while harded properties included compressive strength, the strength efficiency of cement, pulse velocity, electrical resistivity, chloride ion permeability and sulfate attack were also measured. SEM, MIP and 3D microscopy were analysied. The results show as the workability of cementitious material will be flowable by simply using SP. Under the same w/b and age, if no imperfection is involved, compressive strength, ultrasonic pulse velocity, electrical resistance, and Chloride Penetration are linear proportion to the coating thickness, and the thinner the coating thickness the better the performance of concrete is specified. Compares in the ACI method, the fuller’s ideal curve method surpasses ACI design of strength efficiency of cement benefit approximately 2.55 above times law, and would reduce the chloride ion permeability of HPC up to about 2.94~7.15 times. Concrete specimens with optimal paste thicknesses are experimented to seek explanations for problems of concrete, if the coating thickness on aggregate is decreased, the durability is increased, such as electrical resistivity, chloride ion permeability and sulfate attack.

Keyword: Fuller’s gradation curve , Cementious material, Cementitious quantity , Coating thickness, Durability

總目錄 中文摘要…………………………………………………………………I 英文摘要 ………………………………………………………….……II 總目錄…………………………………………………………..………III 表目錄………………………………………………………………....VII 圖目錄……………………………………………………………….…IX 符號及代號說明……………………………………………………..XIX 第一章 緒論……………………………………………………………..1 1-1 研究動機…………………………………………………………..1 1-2 研究目的…………………………………………………………..3 1-3 研究範圍及方法…………………………………………………..3 1-4 研究流程…………………………………………………………..4 第二章 文獻回顧………………………………………………………..6 2-1顆粒堆積理論……………………………………………………..6 2-1-1裝填理論……………………………………………………..6 2-1-2 骨材顆粒連續級配理論…………………………………….8 2-1-3 骨材顆粒不連續級配理論………………………………...16 2-2配比模式探討……………………………………………………22 2-2-1美國方法(ACI 211)………………………………………….24 2-2-2英國方法(BRE 1988)………………………………………..28 2-2-3法國方法…………………………………………………….29 2-2-4 日本自充填混凝土配比方法…………………………...…34 2-2-5 台灣實驗緻密配比方法……………………………………41 2-3水泥基質材料之組成……………………………………………45 2-3-1 卜特蘭水泥...………………………………………………46 2-3-2 卜作嵐材料……………………………...…………………49 2-4水泥基質材料巨微觀性質………………………………………70 2-4-1 水泥基質材料的新拌性質……………...…………………71 2-4-2 水泥基質材料體積穩定性………………...………………77 2-4-3 力學性質…………………………..……….………………82 2-4-4 耐久性……………………………………..…….…………91 2-4-5 微觀特性………………………………...…………………97 第三章 研究架構與方法……………………………………………..109 3-1 實驗流程……………………………………………………….109 3-2 實驗材料……………………………………………………….111 3-2-1 惰性顆粒材料……………………………………………..111 3-2-2 膠結料……………………………………………………..111 3-2-3 液相材料…………………………………………………..112 3-3 配比設計……………………………………………………….113 3-3-1 Fuller 級配曲線配比模式………………………………...113 3-3-2 ACI配比設計………………………………………..….…117 3-4 實驗設備及方法……………………………………………….119 3-4-1 主要實驗設備……………………………………………..119 3-4-2 試驗方法…………………………………………………..119 第四章 配比特性分析………………………………………………..136 4-1 Fuller理論級配曲線配比法與傳統配比之比較………………136 4-2 Fuller級配曲線粒料堆積分析…………………………………137 4-2-1 三種粒級堆積……………………...……………………..138 4-2-2 四種粒級堆積……………………..……………………...139 4-2-3 粒料細小化之堆積特性(RPM)…………………………..140 4-2-4 顆粒組成對堆積密度之影響…………………………….141 4-3 水泥基質材料配比分析……………………………………….142 4-3-1 配比中各組成材料關係……………………..……….…..142 4-3-2 綜論……………………………………………..………...145 第五章 水泥基質材料組成對巨微觀性質之影響…………………..160 5-1 巨觀性質……………………………………………………….160 5-1-1 配比特性………………………………………...………..160 5-1-2 硬固性質…………………………...……………………..161 5-1-3 耐久性………………………………...…………………..163 5-2微觀形態…………………………..……………………………164 第六章 膠結漿「質」與「量」對巨微觀性質之影響……………..177 6-1 膠結漿「質」「量」對新拌性質之影響……………………..177 6-1-1 工作性……………………………………...………………178 6-1-2 單位重量…………………………………………...………182 6-1-3 水化熱…………………………………...…………………183 6-2 膠結漿「質」「量」對硬固性質之影響……………………..184 6-2-1 抗壓強度………………………………...…………………185 6-2-2 水泥強度效益………………………………...……………193 6-2-3 超音波速率…………………………………………..…….196 6-3 膠結漿「質」「量」對耐久性之影響………………………..200 6-3-1 表面電阻………………………………………...…………201 6-3-2 氯離子滲透……………………………..………………….204 6-3-3 硫酸鹽侵蝕………………………………...………………207 6-4 微觀特性………………………………………………………209 6-4-1 電子顯微形態(SEM)………………………………………209 6-4-2 孔隙結構(MIP)…………………………………………….210 6-4-3 3D雷射顯微構造…………………………………………..211 第七章 綜合評析……………………………………………………..268 7-1 混凝土性質評析……………………………………………….268 7-2 混凝土強度與其它性質相關性之討論……………………….273 第八章結論與建議……………………………………………………290

參考文獻

1. J. Hrubisek, "Kolloid-Beihefte", 53:385, 1941.
2. L. C. Graton and H. J. Fraser, J. Geol., 36:205, 1935.
3. 王景信(黃兆龍指導),「顆粒材料與力學行為之研究」,國立台灣科技大學碩士論文,pp.71,1991。
4. W. B. Fuller, J. E. Thompson, The Laws of Proportioning Concrete, A.S.C.E. Transactions, LIX pp 67-172, 1926.
5. K. A. MacDonald & M. Lukkarila, “Design Globally, Proportion Locally” ACI Shotcrete, Summer 2003.
6. J. F. Young, S. Mindess, R. J. Gray and A. Bentur, "The Science and Technology of Civil Engineering Materials", Prentice-Hall International Editions, U.S.A., ISBN 0-13-861519-5, pp.193-194, 1999.
7. G. Shakhmenko & J. Birsh, “Concrete Mix Design and Optimization.” PhD Symposium in Civil Engineering. Budapest, 1998.
8. Genadij Shakhmenko, “Investigations on Concrete Mix Design for Plastic Concrete”, Summary of Doctoral Thesis, Faculty of Civil Engineering Institute of Materials and Constructions, RIGA TECHNICAL UNIVERSITY, 2004.
9. Stefan Hafner, Stefan Eckardt and Carsten Konke, “A geometrical inclusion-matrix model for the finite element analysis of concrete at multiple scales”, Proceedings of 16th IKM, Gurlebeck, Hempel, Konke, Weimar, Germany, 2003.
10. Bolomey, J., “Determination of Compressive Strength of Mortar & Concrete.” Schweiaeriche Bauzeitung, p26, 1926.
11. Feret, R., “Sur la Compactite des Mortiers Hydauliques,” 1892; Soc. d’Ind. Natl, 1897; Le Genie Civil, 1936.
12.Birebent, A. “Etude Sur la Composition et les Prpprietes des Béton Caverneux", Annales de L 'institut Technique du Bitiment et des Travaux.
13.劉崇熙,文梓藝,汪在芹,李珍等編著,「混凝土骨料性能與製造工藝」,濟南理工大學出版社,ISBN 7-5623-1438-1,中國,1999。
14. Faury, J. , " Le béton – Influence de ses constituents inertes – Règles à adopter pour sa meilleure composition", sa confection et son transport sur les chantiers. 3rd edn, Dunod, Paris, 1944.
15. Popovics, S. “Analysis of concrete strength vs. water-cement ratio relation-ship” ACI Materials Journal, Vol.87, No.5, 517-528, 1990.
16.Dreux, G., "Guide pratigue du béton", Collection de l’TTBTP, 1970.
17.Dreux, G. and Gorisse, F. Vibration, ségrégation et ségrégabilité des bétons. Annales de l’Institute Technique du Batiment et des Travaux Publics, no. 265, Janvier, 37-86, 1970.
18. R. Feret, Sur la Compactite des Mortiers Hydauliques, 1892; Soc. d’Ind. Natl, 1897; Le Genie Civil, 1936.
19. R. Vattette. Bulletin, "A L'Ecole des Travaux Public de Paris", France, 1940, composition des betons. "Mise au Point de la questions", Annales de L'Institut Technique du Batiment et des Travanx Publics, Mars-Avril, No. 66, 1949.
20. J. Villey et R.Vatte, "Recherches Experimantales Relative au Neo-beton", Genie civiler, octobre, 1946.
21. Mclntosh, J. D. & Erntroy, H. C., “The Workability of Concrtet Mixes with in Aggregates.” Cement Concrete Assoc. Res. Rep. London, 1955.
22. Mclntosh, J. D., “The use in mass Concrete of aggregate of large maximum size.” Civil Engineering, London, 1957.
23.Joisel, A., “Composition des bétons hydrauliques,“ Annales de l、ITBTP, 5ème année, No. 58, Série: Béton. Béton armé (XXI), October.
24.Kantha Rao, V.V.L. and Krishnamoothy, S., “ Aggregate mixtures for least-void content for use in polymer concrete”, Cement, Concrete and Aggregates, CCAGDP, 15(2), 97-107, 1993.
25.F. de Larrard, "Concrete Mixture Proportioning : A Scientific Approach", English language edition published by Spon Press, 1999.
26.C.C. Furnas, “Flow of Grasses Through Beds of Broken Solids”, Bur. Mines Bull, 307, 74ff. 1929.
27.V.J. Johansen and P.J. Andersen, G. M. Idorn Consult A/S, “Particle Packing and Concrete Properties”, Materials Science of Concrete II, The American Ceramic Socirty, Inc. pp.111-147, 1989.
28. P.J. Andersen, “Control and Monitoring of Concrete Production”, Ph.D. Thesis, Academy of Technical Sciences, The Technical University of Denmark, 1990.
29.黃兆龍,「高性能混凝土理論與實務」,詹氏,台北, 2000。
30.A.M. Neville, "Properties of Concrete", Longman, Harlow, 1995.
31.ACI Committee, “Standard Paractice for Selecting Proportions for Normal, Heavyweight and Mass Concrete”, ACI 211. 1-91. American Concrete Institute, Farmington Hills, Michigan, 1991.
32.Caquot, A. Rôle des matériaux inertes dans le béton. Mémoire de la Société des Ingénierus Civils de France, July-August 1937.
33.Lyse, I. Tests on consistency and strength of concrete having constant water content. Proceedings of the ASTM, 32, Part II, 629-636, 1932.
34.J.M. Shilstone, "High-performance concrete mixtures for durability", High Performance Concrete in Severe Environments", SP 140-14, pp.281-305, 1993 .
35. BRE, “Design of Normal Concrete Mixes”, Building Research Establishment, Watford, UK, 1988.
36. Faury, J. Le béton – Influence de ses constituents inertes – Règles à adopter pour sa meilleure composition, sa confection et son transport sur les chantiers. 3rd edn, Dunod, Paris, 1944.
37. Baron, J. and Lesage, R. La composition du béton hydraulique, du laboratoire au chantier. Rapport de recherche des Laboratoires des Ponts et Chaussées No. 64, December 1976.
38. 詹穎雯,「自充填混凝土與相關規範」,自充填混凝土產製與施工,台灣營建研究院,台灣,2000。
39.H. Okamula, K. Maekawa, and K. Ozawa, High performance Concrete, Social System Institute, Tokyo, 1993.
40. Hwang, C. L., Tsai, C. T., “The Application of a Geometry Concept to Solve Algebraic Solution in DMDA Method”, Self-Consolidating Concrete (SCC), 2005.
41. Hwang, C.L., and Y.Y. Chen, “The Property of Self-Consolidating Concrete Designed by Densified Mixture Design Algorithm”, The Proceedings of First North American Conference On The Design And Use of Self-Consolidating Concrete, ACBM, p121-126, 2002.
42. S.H. Kosmatka, B. Kerkhoff, and W.C. Panarese, "Design and Control of Concrete Mixtures", Portland Cement Association, Skokie, Illionois, U.S.A., pp.65-70, 2003.
43. Taylor, H. F. W., "Cement Chemistry", Thomas Telford Publishing, London, pp.477, 1997.
44. 黃兆龍,「簡編混凝土性質與行為」,詹氏書局,ISBN 957-705-312-2, 2005。
45. Campbell, Donald H., "Microscopical examination and Interpretation of Portland Cement and Clinker", SP030, Portland Cement Association, 1999.
46. Locher, F. W., Richartz, W. and Sprung, S., "Setting of Cement Part I: Reaction and Development of Stucture", ZKG INTERN. 29, No. 10, pp.435-442, 1976.
47. Tennis, Paul D. and Jennings, Hamlin M., "A Model for Two Typrs of Calcium Silicate Hydrate in the Microstructure of Portland Cement Paste", Cement and Concrete Research, Pergamon, pp.855-863, June 2000.
48. Mehta, P.K., and J.M. Montliro, "Concrete-Structure", Properties and Materials, Prentice-Hall, 2003.
49. A. Fernadez-Jimenez, A. Palomo and M. Criado, “ Microsture
development of alkali-activated fly ash cement : adescriptive “,
Cement and Concrete Research, Vol. 35, No., 2005, pp. 1204-1209.
50. Manz. O. E., “Review of International Specifications for use of Fly Ash in Portland Cement Concrete”, Fly Ash, Silica Fume, Slag and Other Mineral By-Products in Concrete, ACI SP-79 Vol.I, pp.187~200, Detroit, 1998.
51.Robert C. Lewis FCS, MICT., ”Microsilica for Concrete Applications”, ACT Course, 2001.
52. CNS 3036,「卜特蘭水泥混凝土用飛灰及天然或蝦燒卜作嵐攙和物」。
53. Mehta, P.K. ”Pozzolanic and Cementitions By Products as Mineral Admixtures for Concrete-A Critical Review”, First International Conference on the use of Fly Ash , Silica Fume , Slag and Other Mineral By-products in Concrete , Canada ,pp.1-46, 1983.
54.行政院公共工程委員會,公共工程飛灰混凝土使用手冊,台北,1999。
55.林炳炎,飛灰、矽灰、高爐爐石用在混凝土中,三民書局,1993。
56.中國鋼鐵公司,「爐石利用推廣手冊」。
57.黃兆龍,「高爐熟料的性質及在混凝土工程上的應用」,營建世界,第三十四期,第55~59頁,台北,1984。
58.黃兆龍,「高爐熟料在水泥上之利用」,現代混凝土技術研討會,台灣營建研究中心,第162~177頁,1984。
59.中華民國國家標準,預拌混凝土相關國家標準彙編,1993。
60.江奇成,蔡明達,顏韶竫,黃兆龍,『高強度高性能混凝土工作性與水化熱之研究』,第十六屆全國技術及職業教育研討會,pp.41~50,工業類 土木建築組論文集。
61.Malhotra V.M., 1997, “Specialized Innovative Application of Superplasticizers in Concrete”, Proceedings of R & D and of High Performance Concrete, Taipei, pp.19~58.
62.鄭凱維,「緻密爐石水泥混凝土工程性質之研究」,碩士論文,國立台灣科技大學營建工程研究所,台北,2002。
63.Silica Fume User’s Mannual, SFA, FHWA Pubtication#IF-05-016, April 2005.
64.B. W. Langan, K. Weng and M. A. Ward, “Effect of silica fume and fly ash on hydration of Portland cement”, Cement and Concrete Research, Vol. 32, No. 7, pp.1045-1051(2002).
65.Malhotra, V.M., and Mehta, P.K., “HIGH-PERFORMANCE, HIGH-VOLUME FLY ASH CONCRETE”, 2005。
66.Hana, S.H., J.K. Kimb and Y.D. Park, Prediction of Compressive Strength of Fly Ash Concrete by New Apparent Activation Energy Function, Cement and Concrete Research 33, pp.965–971, 2003.
67.Jaturapitakkul, C., K. Kiattikomol and V. Sata, Theerarach Leekeeratikul, Use of Ground Coarse Fly Ash as a Replacement of Condensed Silica Fume in Producing High-Strength Concrete, Cement and Concrete Research 34, pp.549–555, 2004.
68. Lo, T.Y., H.Z. Cui and Z.G. Li, Influence of Aggregate Pre-wetting and Fly Ash on Mechanical Properties of Lightweight Concrete, Waste Management 24, pp.333–338, 2004.
69.BouzoubaaÃa, N., and M. Lachemi, “Self-Compacting Concrete Incorporating High Volumes of Class F Fly Ash Preliminary Results”, Cement and Concrete Research 31, pp.413-420, 2001.
70. Yeaua, K.Y., and E.K. Kimb, “An experimental Study on Corrosion Resistance of Concrete with Ground Granulate Glast-Furnace Slag”, Cement and Concrete Research 35, pp.1391– 1399, 2005.
71.黃兆龍編著,「卜作嵐混凝土使用手冊」,中興工程顧問社,科技圖書,台北,2007。
72.Rao, G.A., Investigations on the Performance of Silica Fume-Incorporated, Cement and Concrete Research 33, pp.1765–1770, 2003.
73.Richard, P. and Cheyrezy, M., “Composition of Reative Powder Concrete”, Cement and Concrete Research, Vol. 25, No. 7, 1995.
74.Jianxin M. and Holger Schneider, “Properties of Ultra-High-Performance Concrete”, Ultra High Performance Self Compacting Concrete LACER No. 7, pp.25-32, 2002.
75.Dugat, J., N. Roux, and G. Bernier, “Mechanical Properties of Reactive Powder Concrete,” Materials and Structures, Vol. 29, pp 233-240, May 1996.
76.E. Tazawa, S. Miyazawa, “Experiment Study on Mechanism of Autogenous Shrinkage of Concrete”, Cement and Concrete Research, Vol. 28, No. 18, pp.1633-1638. 1998.
77.姚燕、王玲和田培主編,「高性能混凝土」,化學工業出版社,北
京,2006。
78.Lee, K.M., H.K. Lee, S.H. Lee and G.Y. Kim, “Autogenous Shrinkage Concrete Containing Granulated Blast-Furnace Slag”, Cement and Concrete Research 36, pp.1279–1285, 2006.
79.F. de Larrard and A. Belloc, “The Influence of Aggregate on the Compressive Strength of Normal and High-Strength Concrete”, ACI Material Jounal, pp.417-426, 1997.
80.Y. L. Wong, L. Lam, C., S. Poon, F. P. Zhou, “Properties of fly ash-modified cement mortar-aggregate interfaces”, Cement and Concrete Ressearch 29, 1999.
81.Richard, P. and M. Cheyrezy., “Reactive Powder Concretes with High Ductility and 200-800 MPa Compressive Strength.”, ACI Spring Convention, San Francisco, April 1994.
82.Ming-Gin Lee, Yung-Chih Wang, Chui-Te Chiu, A Preliminary Study of Reactive Powder Concrete as a New Repair Material, Construction and Building Material, Available on line 19, 2005.
83.Matte, V., Moranville, M., Adenot, F., Rchet, C. and Torrenti, J. M., “Simulated Microstructure and Transport Properties of Ultra-high Performance Cement-based Materials”, Cement and Concrete Research, Vol. 30, No.12, pp.1947-1954, 2000.
84.Yin-Wen Chan and Shu-Hsien Chu, Effect of Silica Fume on Steel Fiber Bond Characteristics in Reactive Powder Concrete, Cem. Concr. Res., 34 (7) (2004).
85.Matte, V. and M. Moranville, “Durability of Reactive Powder Composites: Influence of Silica Fume on the Leaching Properties of Very Low Water/Binder Pastes”, Cement and Concrete Composites, Vol. 21, No. 1, pp.1-9, 1999.
86.Dugat, J., N. Roux, and G. Bernier, “Mechanical Properties of Reactive Powder Concrete,” Materials and Structures, Vol. 29, pp 233-240, May 1996.
87.Mindess S. and J.F. Young, “Concrete”, Prentice-Hall, Englewoad Cliffs, N.J., 1981.
88.ACI Committee 201, “Guide to Durable Concrete”, ACI Materials Jouranl, V.88, No.5, Sep.-Oct., pp.544-582, 1991.
89. Véronique Baroghel-Bouny, “Water vapour sorption experiments on hardened cementitious materials. Part II: Essential tool for assessment of transport properties and for durability prediction”, Cement and Concrete Research, Vol. 37, No. 3, pp. 438-454(2007).
90.Hansson, I.L.H., and C.M. Hansson., “Electrical Resistivity Measurements of Portland Cement Based Materials”, Cement and Concrete Research, Vol. 13, pp. 675~683, 1983.
91.黃兆龍,湛淵源,廖東昇,「汙水處理廠防漏混凝土設計及施工驗證」,高性能混凝土設計及應用研討會,台北,1999。
92.Cavalier, P.G., and P.R. Vassie, “Investigation and Repair of Reinforcement Corrosion in a Bridge Deck”, Proc. Inst. Of Civil Engineers, Vol. 70, Part 1, August pp.460-480, 1981.
93.米澤敏男, Ashworth, V., and Procter, R. P. M.,”セメント水和物にするモルタル細孔溶液中の固定のメカニズム,” コソクート學年次論文報告集, V. 10-2, pp.475-480, 1988 .
94.Hussain, S. E., Al-Gahtani, A. S., and Rasheeduzzafar, “Chloride Threshold for Corrosion of Reinforcement in Concrete,” ACI Materials Journal, V. 93, No. 6, Nov.-Dec. 1996, pp.534-538.
95.Corbo, J., and Farazam, H., “Influence of Three Commonly Used Inorganic Copounds on Pore Solution Chemistry and Their Possible Implications to the Corrosion of Steel in Concrete.” ACI Materials Journal, V.86, No.5, pp.498-502, Sept.-Oct. 1989.
96.露木尚光, 梅村靖弘, “塩化物イオンの透過型と固定化に関する混合剤および混合材の影響,” コソクート工學, V. 39, No. 7, July 2001, pp.19-24.
97.Yang , C.C. and Cho, S.W., “An electrochemical method for accelerated chloride migration test of diffusion coefficient in cement-based materials”, Materials Chemistry and Physics 81, pp.116-125, 2003.
98.張峻傑,『以加速氯離子穿透試驗評估混凝土耐久性之研究』,碩士論文,國立台灣海洋大學材料工程研究所,基隆,2003。
99.廖展章,『以加速氯離子穿透試驗評估礦物掺料及用量之混凝土耐久性之研究』,碩士論文,國立台灣海洋大學材料工程研究所,基隆,2004。
100.林致緯,『以鹽水浸漬試驗與快速氯離子滲透試驗探討混凝土中 氯離子擴散行為』,碩士論文,國立台灣海洋大學材料工程研究所,基隆,
2003。
101. M. Cadtellote, C. Andrade, and C, Alonso, 『Modeling of the processes during Steady-state migration test: Quantification of transference numbers』, Materials and Structures, V.32, No.1, PP.180-186(1999).
102.吳建興,「活性粉混凝土補強混凝土構件與耐久性能之測試研究」,碩士論文,朝陽科技大學,民國92年。(李明君教授指導)。
103.N. Roux, C. Andrade, M. A. Sanjuan, “Experimental Study of Durability of Reactive Powder Concrete,” Journal Of Materials In Civil Engineering, Feb 1996.
104.活性粉混凝土補強R.C.構件與耐久性之研究(1/2)(期末報告),交通部運輸研究所與國立台灣科技大學合作辦理,民國94年11月。
105. B. B. HΠOXHH, “ΓNΠpocNΠIKaTbI KaΠbIINR—CNHTe3 MOHOKpecaΠ-IIOBN KpNCTΠΠOXNMNR, HayKa, 1979.
106.重慶建築工程學院,南京工學院,「混凝土學」,中國建築工業出版,北京,1981。
107.蒲心誠著,「超高強高性能混凝土—原理.配製.結構.應用」,重慶
大學出版,2005。
108. M. Regourd, “Condensed Silica Fume”, Ed. Aitcin P.C. Universite de Sherbrooke, Canada, pp 20-24, 1983.
109. D. Andrija, “ 8th International Congress on Chemistry of Cement”, Rio de Janeiro, Brazil. Volume 4, pp 279-285, 1986.
110. C. L. Page and O. Vennesland, “ Pore solution composition and chloride binding capacity of silica fume cement pastes”, Materials and Structures 16, pp 19-25, 1983.
111. D.G. Parker, “Alkali Aggregate Reactivity and Condensed Silica Fume”, Ref. No. SA 854/3C. Elkem Materials Ltd, 1986.
112. S. Dlamond, “8th International Congress on Chemistry of Cement”, Rio de Janeiro, Brazil, Vol 1, pp 122-147, 1986.
113. C. L. Page, “Influence of Microsilica on Compressive Strength of Concrete made from British Cement and Aggregates”, For Elkem Materials Ltd, 1983.
114. A.W. Momber, “An SEM-study of high-speed hydrodynamic erosion of cementitious compositrs”, Composites Part B: engineering, Vol. 34, pp. 135-142, 2003.
115. K. O. Kjellsen, B. Lagerblad, “Microstructure of tricalcium silicate and Portland cement systems at middle periods of hydration-development of Hadley grains”, Cement and Concrete Research, Vol.37, No.1, pp13-20, 2007.
116. Crammond, N. J., “The thaumasite from of sulfate attack in the UK”, Cement Concrete Composites 25, pp.809-818(2003).
117.謝素蘭,「以高壓及高溫燒結技術鑄造水泥、黏土及飛灰混合料組件之研究」,國立台灣科技大學碩士論文,pp.182, 1990。
118. N. Roux, C. Andrade, M. A. Sanjuan, “Experimental Study of
Durability of Reactive Powder Concrete,” Journal Of Materials In
Civil Engineering, Feb 1996.
119.Masami UZAWA, Yoshihide SHIMOYAMA and Shigeo KOSHIKAWA, “Fresh and Strength Properties of New Cementitious Composite Material Using Reactive Powder,” Report of the Research Institute of Industrial Technology, Nihon University, Number 75, 2005.
120.G. Mertens , J. Elsen, “Use of computer assisted image analysis for the determination of the grain-size distribution of sands used in mortars”, Cement and Concrete Research, Vol. 36, Iss. 8, pp.1453-1459(2006).
121.林明俊,游士諄,莊勝雄,黃振銘,陳夏宗,「具微細特徵PC板材熱壓成型特性之研究」,中國機械工程學會論文集,中原大學,論文編號:D11-0021,2007。
122.Fondly Reymont Kurniawan(黃兆龍指導), “The Study on the Early Age Cracking due To the Addition of Silica Fume and The Trouble-shooting Strategy”, 國立台灣科技大學碩士論文,2007.

QR CODE