簡易檢索 / 詳目顯示

研究生: 邱榮全
Jung-Chuan Chiou
論文名稱: 可撓式有機薄膜電晶體彎曲應力下可靠度改善之研究
Improvement and Investigation on Stability of Flexible Organic Thin-Film Transistors under Bending Stress
指導教授: 范慶麟
Ching-Lin Fan
李志堅
Chih-Chien Lee
口試委員: 徐世祥
Shih-Hsiang Hsu
王錫九
Shea-Jue Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 114
中文關鍵詞: 可撓式有機薄膜電晶體彎曲劣化塑膠基板五苯環
外文關鍵詞: bending stress
相關次數: 點閱:253下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用塑膠基板搭配有機主動層與介電層製作而成的可撓式有機薄膜電晶體,在未來電子科技產業有非常好的前景。而有機薄膜電晶體具備可撓性、低溫製程、低成本和可大面積製作等優勢,因此在電子產品應用上相當多元,舉凡電子紙顯示器、無線射頻標籤、智慧服飾和大面積感測器等。
    在本研究中,主要以探討元件在彎曲狀態下電特性之變化。首先,我們先建立一個可撓式有機薄膜電晶體的標準製程。將元件分別製作於厚度125 μm和25 μm的Polyimide (PI)塑膠基板上,並觀察在此二厚度基板之元件,彎曲4 mm曲率半徑下電特性的變化。接著,比較元件在厚度25 μm的PI塑膠基板上,彎曲不同曲率半徑(4、3、2、和1 mm)並量測其電特性的均勻度。最後,將元件長時間彎曲於曲率半徑1 mm狀態下,比較真空環境與大氣下電特性之差異。
    研究結果顯示,厚度較薄之基板,在彎曲相同曲率半徑下,元件電特性的表現較為優秀,亦可承受較小之彎曲半徑;而在不同環境長時間撓曲的狀態下,發現長時間的彎曲狀態下,對元件本身並不會造成明顯劣化;但當大氣中的水氧與彎曲應力交互作用時,則會加速劣化元件的電特性。


    Organic semiconductors and polymer dielectrics with plastic substrate recently have been an emerging technology for flexible electronic devices, such as organic thin-film transistors (OTFT). Organic thin-film transistors have the advantages of mechanical properties, low temperature processing, low cost, and large area capability and so have various potential applications such as paper-like displays, radio frequency identification tags, e-textiles, and large area sensors.
    In our study, we investigated the transistors’ behavior during bending states, and not just only before and after bending. First, we established a standard manufacturing process of organic thin-film transistors, and chose thickness 125 μm and 25 μm polyimide for our flexible devices’ substrate to examine the electrical characteristics during the same bending radius of 4 mm. Next, we compared the uniformity of characteristics for the devices fabricated on 25 μm polyimide substrate with several bending radii of 4, 3, 2, and 1 mm. Eventually, the devices have stored separately in different environments, vacuum and atmosphere, with a long-term bending state to observe the variations in performance.
    The experiment results indicate that thinner substrate could perform more excellent characteristics of OTFT with the same bending radius than that of thicker one, and better durability for smaller bending radii. While the device was in a long-term bending state in the vacuum, the performance wouldn’t deteriorate with time; however, when the device was placed in the air, the mechanical bending would accelerate the degradation of the electrical characteristics.

    論文摘要 I ABSTRACT II 誌謝 III 圖目錄 VII 表目錄 XI 第一章 序論 1 1.1 研究背景 1 1.2 研究動機 3 1.3 論文大綱 4 第二章 有機薄膜電晶體介紹 7 2.1 有機半導體介紹 7 2.1.1 有機半導體材料概論 7 2.1.2 有機半導體Pentacene之特性介紹 9 2.2 有機半導體之傳輸機制 9 2.2.1 Hopping Model 10 2.2.2 Multiple Trapping and Release 11 2.2.3 偏極子(Polaron)和雙偏極子(Bipolaron) 12 2.3 有機薄膜電晶體結構 13 2.4 有機薄膜電晶體之操作模式 14 2.5 電性參數與萃取方式 16 2.5.1 載子移動率(Mobility, μ) 16 2.5.2 臨界電壓(Threshold Voltage, V_th) 18 2.5.3 次臨界斜率(Subthreshold Swing, S.S.) 19 2.5.4 開關電流比(On/Off Current Ratio, I_on/I_Off) 19 第三章 可撓式有機薄膜電晶體之製作 30 3.1 元件製作 30 3.2 製作流程 31 3.2.1 塑膠基板(PI Substrate) 31 3.2.2 載片(holder) 31 3.2.3 閘極(Gate) 32 3.2.4 閘極絕緣層(Gate Insulator Layer) 33 3.2.4 主動層(Active Layer) 34 3.2.6 源極/汲極(Source/Drain) 34 3.3 分析設備介紹及製程機台 35 第四章 有機薄膜電晶體在不同彎曲半徑及環境下對電特性之影響 46 4.1 閘極金屬對有機薄膜電晶體特性的分析 46 4.1.1 閘極金屬(Gate) 47 4.1.2 閘極絕緣層(Gate Insulator Layer) 47 4.1.3 主動層(Active Layer) 47 4.1.4 源極/汲極(Source/Drain) 47 4.1.5 元件電特性分析 48 4.2 不同基板厚度對可撓式有機薄膜電晶體影響 50 4.2.1 有機薄膜電晶體製作在PI塑膠基板流程 50 4.2.2 有機薄膜電晶體基本電特性分析 51 4.2.3 彎曲固定曲率半徑4 mm時不同基板厚度的有機薄膜電晶體基本電特性分析 52 4.3 不同的彎曲半徑對於有機薄膜電晶體電特性之影響 54 4.3.1 有機薄膜電晶體在25 μm PI塑膠基板之製作 55 4.3.2 彎曲不同半徑時有機薄膜電晶體之電特性與分析 55 4.3.3 彎曲不同半徑時有機薄膜電晶體之電特性均勻度的探討 57 4.4 環境與長時間彎曲狀態下對有機薄膜電晶體電特性之影響 59 4.4.1 有機薄膜電晶體製作與量測 59 4.4.2 有機薄膜電晶體長時間在大氣中,平放與彎曲狀態下電特性之探討 59 4.4.3 有機薄膜電晶體長時間在真空下,平放與彎曲狀態下電特性之探討 61 第五章 結論與未來展望 100 5.1 結論 100 5.2 未來工作與展望 101

    [1] Jaeyoung J., Sooji Nam, Jihun H., Jong-Jin Park, Jungkyun Im, Chan Eon Park and Jong Min Kim, “Photocurable polymer gate dielectrics for cylindrical organic field-effect transistors with high bending stability,” Journal of Material Chemistry, Vol. 22, p. 1054 (2012).
    [2] T. Ji, J. Xie, and V. K. Varadan, “Design of pentacene thin film transistors on flexible substrates,” Proceedings of SPIE, Vol. 5763, p. 77 (2005).
    [3] R. Ye, M. Baba, K. Suzuki, Y. Ohishi, and K. Mori, “Effects of O2 and H2O on electrical characteristics of pentacene thin film transistors,” Thin Solid Films, Vol. 464-465, p. 437 (2004).
    [4] Y. G. Seol, W. Heo, J. S. Park, N.-E. Lee, D. K. Lee, and Y. J. Kim, “Improvement of Mechanical and Electrical Stability of Flexible Organic Field-Effect Transistors by Multistack Hybrid Encapsulation,” Journal of the Electrochemical Society, Vol. 158, pp. 931 (2011).
    [5] T. Sekitani, U. Zschieschang, H. Klauk, and T. Someya, “Flexible organic transistors and circuits with extreme bending stability,” Nature Materials, Vol. 9, p. 1015 (2010).
    [6] A.Tsumura, H. Koezuka, and T. Ando, “Macromolecular electronic device: Field‐effect transistor with a polythiophene thin film,” Applied Physics Letters, Vol. 49, pp. 1210 (1986).
    [7] A. Assadi, C. Svensson, M. Willander, and O. Ingans, “Field‐effect mobility of poly(3‐hexylthiophene),” Applied Physics Letters, Vol. 53, p. 195 (1988).
    [8] J. Paloheimo, E. Punkka, H. Stubb, and P. Kuivalainen, in Lower Dimensional Systems and Molecular Devices, Proceedings of NATO ASI, Spetses, Greece (Ed: R. M. Mertzger), Plenum, New York, (1989).
    [9] Z. Bao, A. Dodabalapur and A. J. Lovinger, “Soluble and processable regioregular poly(3‐hexylthiophene) for thin film field‐effect transistor applications with high mobility,” Applied Physics Letters, Vol. 69, p. 4108 (1996).
    [10] H. Sirringhaus, N. Tessler, and R. H. Friend, “Integrated Optoelectronic Devices Based on Conjugated Polymers,” Science, Vol. 280, p. 1741 (1998).
    [11] F. Ebisawa, T. Kurokawa, and S. Nara, “Electrical properties of polyacetylene/polysiloxane interface,” Journal of Applied Physics, Vol. 54, p. 3255 (1983).
    [12] J. H. Burroughes, C. A. Jones, and R. H. Friend, “New semiconductor device physics in polymer diodes and transistors ,” Nature, Vol. 335, p. 137 (1988).
    [13] H. Fuchigami, A. Tsumura, and H. Koezuka, “Polythienylenevinylene thin‐film transistor with high carrier mobility,” Applied Physics Letters, Vol. 63, p. 1372 (1993).
    [14] F. Garnier, A. Yassar, R. Hajlaoui, G. Horowitz, F. Deloffre, B. Servet, S. Ries, P. Alnot, “Molecular engineering of organic semiconductors: design of self-assembly properties in conjugated thiophene oligomers,” Journal of the American Chemical Society, Vol. 115, p. 8716 (1993).
    [15] B.Servet, G. Horowitz, S. Ries, O. Lagorsse, P. Alnot, A. Yassar, F. Deloffre, P. Srivastava, R. Hajlaoui, P. Lang, F. Garnier, “Polymorphism and Charge Transport in Vacuum-Evaporated Sexithiophene Films,” Chemistry of Materials, Vol. 6, p. 1809 (1994).
    [16] A. Dodabalapur, L. Torsi, and H. E. Katz, “Organic Transistors: Two-Dimensional Transport and Improved Electrical Characteristics,” Science, Vol. 268, p. 270 (1995).
    [17] C. D. Dimitrakopoulos, B. K. Furman, T. Graham, S. Hegde, and S. Purushothaman, "Field-Effect Transistors Comprising Molecular Beam Deposited α-ω-Di-hexyl-hexathienylene and Polymeric Insulators," Synthetic Metals, Vol. 92, p. 47, (1998).
    [18] H. E. Katz, L. Torsi, A. Dodabalapur, “Synthesis, Material Properties, and Transistor Performance of Highly Pure Thiophene Oligomers,” Chemistry of Materials, Vol. 7, p. 2235 (1995).
    [19] R. Hajlaoui, D. Fichou, G. Horowitz, B. Nessakh, M. Constant, F. Garnier, “Organic transistors using -octithiophene and , -dihexyl- -octithiophene: Influence of oligomer length versus molecular ordering on mobility,” Advanced Material, Vol. 9, p. 557 (1997).
    [20] R. Hajlaoui, G. Horowitz, F. Garnier, A. Arce-Brouchet, L. Laigre, A. Elkassmi, F. Demanze, F. Kouki, “Improved field-effect mobility in short oligothiophenes: Quaterthiophene and quinquethiophene,” Advanced Material, Vol. 9, p. 389 (1997).
    [21] J. H. Schon, Ch. Kloc, and B. Batlogg, “On the intrinsic limits of pentacene field-effect transistors,” Organic Electronics, Vol. 1, p. 57 (2000).
    [22] Y. Y. Lin, D. J. Gundlach, S. Nelson, and T. N. Jackson, “Stacked pentacene layer organic thin-film transistors with improved characteristics,” IEEE Electron Device Letters, Vol. 18, p. 606 (1997).
    [23] C. D. Dimitrakopoulos, A. R. Brown, and A. Pomp, “Molecular beam deposited thin films of pentacene for organic field effect transistor applications,” Journal of Applied Physics, Vol. 80, p. 2501 (1996).
    [24] Y. Y. Lin, D. J. Gundlach, and T. N. Jackson, “High Mobility Pentacene Organic Thin Film Transistors,” 54th Annual Device Research Conference Digest, New York, p. 80 (1996).
    [25] G. Horowitz, X. Peng, D. Fichou, and F. Garnier, “Role of the emiconductor/insulator interface in the characteristics of π-conjugated- oligomer-based thin-film transistors ,” Synthetic Metals, Vol. 51, p. 419 (1992).
    [26] R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard, and R. M. Fleming, “C60 thin film transistors,” Applied Physics Letters, Vol. 67, p. 121, (1995).
    [27] J. Kastner, J. Paloheimo, and H. Kuzmany, in Solid State Sciences, edited by H. Kuzmany, M. Mehring, and J. Fink, Springer, New York, p. 512 (1993).
    [28] A. R. Brown, D. M. de Leeuw, E. J. Lous, and E. E. Havinga, “Organic n-type field-effect transistor,” Synthetic Metals, Vol. 66, p. 257 (1994).
    [29] J. G. Laquindanum, H. E. Katz, A. Dodabalapur, and A. J. Lovinger, “n-Channel Organic Transistor Materials Based on Naphthalene Frameworks,” Journal of the American Chemical Society, Vol. 118, p. 11331 (1996).
    [30] G. Guillaud, M. Al Sadound, and M. Maitrot, “Field-effect transistors based on intrinsic molecular semiconductors,” Chemical Physics Letters, Vol. 167, p. 503 (1990).
    [31] Z. Bao, A. J. Lovinger, and J. Brown, “New Air-Stable n-Channel Organic Thin Film Transistors,” Journal of the American Chemical Society, Vol. 120, p. 207 (1998).
    [32] H. Fuchigami, A. Tsumura, and H. Koezuka, “Polythienylenevinylene thin‐film transistor with high carrier mobility,” Applied Physics Letters, Vol. 63, p. 1372 (1993).
    [33] C. D. Dimitrakopoulos, and P. R. L. Malenfant, “Organic Thin Film Transistors for Large Area Electronics,” Advanced Material, Vol. 14, p. 99 (2002).
    [34] M. Baldo, M. Deutsch, P. Burrows, H. Gossenberger, M. Gerstenberg, V. Ban, and S. Forrest, “Organic Vapor Phase Deposition,” Advanced Material, Vol.10, p.234 (1998).
    [35] E. M. Conwell, “Impurity Band Conduction in Germanium and Silicon,” Physical Review Letters, Vol. 103, p. 51-61 (1956).
    [36] N. F. Mott, “On the transition to metallic conduction in semiconductors,” Canadian Journal of Physics. Vol. 34, p. 1356 (1956).
    [37] S. Locci, “Modeling of Physical and Electrical Characteristics of Organic Thin Film Transistors,” Ph.D dissertation, University of Cagliari, (2009).
    [38] P. G. Le Comber, and W. E. Spear, “Electronic Transport in Amorphous Silicon Films,” Physical Review Letters, Vol. 25, p. 509 (1970).
    [39] 郭家瑋,「有機薄膜電晶體之載子傳輸特性研究」,博士論文,國立成功大學,台南 (2006).
    [40] 倪偵翔,「可溶性有機薄膜電晶體材料之開發」,碩士論文,國立中央大學,桃園 (2006).
    [41] D. Kumaki, T. Umeda, and S. Tokito, “Influence of H2O and O2 on threshold voltage shift in organic thin-film transistors: Deposition of SiOH on SiO2 gate-insulator surface,” Applied Physics Letters, Vol. 92, p. 093309 (2008).
    [42] Y. H. Noh, Y. Park, S. M. Seo, and H. H. Lee, “Root cause of hysteresis in organic thin film transistor with polymer dielectric,” Organic Electronics, Vol. 7, p. 271 (2006).
    [43] Y. Roichman, and N. Tessler, “Structures of polymer field-effect transistor: Experimental and numerical analyses,” Applied Physics Letters, Vol. 80, p. 151 (2002).
    [44] I. Kymissis, C. D. Dimitrakopoulos, and S. Purushothaman, “High- Performance Bottom Electrode Organic Thin-Film Transistors,” IEEE Transactions on electron devices, Vol. 48, p.1060 (2001).
    [45] G. B. Blanchet, C. R. Fincher, and M. Lefenfeld, “Contact resistance in organic thin film transistors,” Applied Physics Letters, Vol. 84, (2004).
    [46] S. M. Sze, Physics of Semiconductor Devices, Wiley, New York, CH. 7, (1981)
    [47] A. R. Brown, C. P. Jarrett, D. M. de Leeuw, and M. Matters, “Field-effect transistor made from solution-procceed organic semiconductors,” Synthetic Metals, Vol. 88, p. 37 (1997).
    [48] F. C. Chen, T. D. Chen, B. R. Zeng, and Y. W. Chung, “Influence of mechanical strain on the electrical properties of flexible organic thin-film transistors,“ Semiconductor Science and Technology, Vol. 26, p. 034005 (2011).
    [49] D. J. Yun, S. H. Lim, T. W. Lee, and S. W. Rhee, “Fabrication of the flexiblepentacene thin-film transistors on 304 and 430 stainless steel (SS) substrate, “ Organic Electronics, Vol. 10, p. 970 (2009).
    [50] 曾東雄,「可撓式塑膠基板上研製有機薄膜電晶體和場效電晶體」,碩士論文,國立成功大學,台南 (2009).
    [51] K. Fukuda, T. Yokota, K. Kuribara, T. Sekitani, U. Zschieschang, H. Klauk, and T. Someya, “Thermal stability of organic thin-film transistors with self-assembled monolayer dielectrics, “ Applied Physics Letters, Vol. 96, p. 053302 (2010).
    [52] G Covarel, B Bensaid, X Boddaert, S Giljean, P Benaben, and P Louis, “Characterization of organic ultra-thin film adhesion on flexible substrate using scratch test technique,” Surface and Coatings Technology, Vol. 54, p. 493 (2009).
    [53] G. Dong, and Y. Qiu, “Pentacene thin-film transistors with Ta2O5 as the gate dielectric, “Journal of the Korean Physical Society, Vol. 54, p. 493 (2009).
    [54] Y. G. Seol, N. E. Lee, S.H. Park, and J. Y. Bae, “Improvement of mechanical and electrical stabilities of flexible organic thin-film transistor by using adhesive organic interlayer,“Organic Electronics, Vol. 9, p. 413-417 (2008).
    [55] Hongfei Shi, Can Wang, Yueliang Zhou, Kuijuan Jin, and Guozhen Yang, “Silver Nanoparticles Grow in Organic Solvent PGMEA by Pulsed Layser Ablation and Their Nonlinear Optical Properties,“ Journal of Nanoscience and Nanotechnology, Vol. 12, No. 10, p. 7896 (2012).
    [56] P. F. Lee and J. Y. Dai, “Memory effect of an organic based trilayer structure with Au nanocrystals in an insulating polymer matrix,” Nanotechnology, Vol. 21, No. 29, p. 295706 (2010).
    [57] Wei Wang, Dongge Ma, Su Pan, and Yudan Yang “Hysteresis mechanism in low-voltage and high mobility pentacene thin-film transistors with polyvinyl alcohol dielectric” Applied Physics Letters, Vol. 101, No. 3, p. 033303 (2012)
    [58] 金進興, “軟性電路板材料全書,”全華圖書出版社 (2007).
    [59] Tsuyoshi Sekitani, Shingo Iba, Yusaku Kato, and Takao Someya, “Bending Effect of Organic Field-Effect Transistors with Polyimide Gate Dielectrics Layers,” Japanese Journal of Applied Physics, Vol. 44, p. 2841 (2005).
    [60] Tsuyoshi Sekitani, Yusaku Kato, Shingo Iba, Hiroshi Shinaoka, and Takao Someya, “Bending experiment on pentacene field-effect transistors on plastic films,” Applied Physics Letters, Vol. 86, p. 073511 (2005).
    [61] Gleskova, H., Wagner, S., Soboyejo, W., and Suo, Z. “Electrical response of amorphous silicon thin-film transistors under mechanical strain,” Journal of. Applied. Physics, Vol. 92, p. 6224 (2002).
    [62] H. Y. Noh, Y. G. Seol, S. I. Kim, and N. –E. Lee, “Mechanically Flexible Low-Leakage Nanocomposite Gate Dielectrics for Flexible Organic Thin Film Transistors,” Electrochemical and Solid-State Letters, Vol. 11, p. H218 (2008).
    [63] M. H. Choo, Jae Hoon Kim, and Seongil Im, “Hole transport in amorphous-crystalline-mixed and amorphous pentacene thin-film transistors,” Applied Physics Letters, Vol. 81, p. 4640 (2002).
    [64] Ching-Lin Fan, Yu-Zuo Lin, and Chen-Han Huang, “Combined scheme of UV/ozone and HMDS treatment on a gate insulator for performance improvement of a low-temperature-processed bottom-contact OTFT,” Semiconductor Science and Technology, Vol. 26, p. 045006 (2011).
    [65] 陳意仁,「介電材料低溫交聯性聚乙烯苯酚應用於可撓曲性有機薄膜電晶體之研究」,碩士論文,國立成功大學,台南 (2007).
    [66] Chanwoo Yang, Jinhwan Yoon, Se Hyun Kim, Kipyo Hong, Dae Sung Chung, “Bending stress driven phase transitions in pentacene thin film for flexible organic field effect transistors,” Applied Physics Letters, Vol. 92, p. 243305 (2008).
    [67] Jin-Seong Park, Jae Kyeong Jeong, Hyun-Joong Chung, Yeon-Gon Mo, and Hye Dong Kim, “Electronic transport properties of amorphous indium-gallium-zinc oxide semiconductor upon exposure to water,” Applied Physics Letters, Vol. 92, p.072104 (2008).
    [68] Dawen Li, Evert-Jan Borkent, Robert Nortup, Hyunsik Moon, Howard Katz, and Zhenan Bao, “Humidity effect on electrical performance of organic thin-film transistors,” Applied Physics Letters, Vol. 86, p. 042105 (2005).
    [69] Jer-Wei Chang, Wei-lieh Hsu, Chamg-Yo Wu, Tzung-Fang Guo, and Ten-Chin Wen, “The polymer gate dielectrics and source-drain electrodes on n-type pentacene-based organic field effect transistors,” Organic Electronics, Vol. 11, p. 1613 (2010).
    [70] Hsiao-Wen Zan, and Ting-Yu Hsu, “Stable Encapsulated Organic TFT With a Spin-Coated Poly(4-Vinylphenol-Co-Methyl Methacrylate) Dielectric,” IEEE Electron Device Letters, Vol. 32, p. 1131 (2011).
    [71] Moriyasu Kanari, Makoto Kunimoto, Takashi Wakamatsu, and Ikuo Ihara, “Critical bending radius and electrical behaviors of organic field effect transistors under elastoplastic bending strain,” Thin Solid Films, Vol. 518, p. 2764-2768 (2010).

    無法下載圖示 全文公開日期 2017/01/22 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE