簡易檢索 / 詳目顯示

研究生: 洪柏江
Bo-Jiang Hong
論文名稱: 無介面活性劑製備 介孔生物活性玻璃之藥物載體
Surfactant-free synthesis of mesoporous bioactive glass for drug delivery
指導教授: 施劭儒
Shao-Ju Shih
口試委員: 顏怡文
Yee-wen Yen
段維新
Wei-Hsing Tuan
陳錦毅
Chin-Yi Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 95
中文關鍵詞: 介孔生物玻璃藥物載體雙氧水噴霧熱裂解法
外文關鍵詞: Mesoporous bioactive glass, Hydrogen peroxide, Drug carrier, Spray pyrolysis
相關次數: 點閱:302下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

開放式骨折的發生常伴隨著複雜的治療流程,而在開放式骨折的治療初期,常常需施加抗生素以預防感染的風險。此外,抗生素的施加,常常為了達到有效的治療效果,需要定時定量的植入於人體中,而藥物載體的應用能夠有效控制藥物的釋放亦能減少藥物植入人體的次數。在老年人的骨折事件中,老年人的骨骼修復能力較為不佳。而生物活性玻璃(BG)是一個具有優異生物活性的骨植入物以及藥物載體,其在浸入模擬體液後會於表面上形成氫氧基磷灰石層能夠有效幫助骨骼的修復。而在藥物載體的研究中,提高比表面積與孔體積能夠有效影響材料的載藥量,而具有高比表面積介孔生物活性玻璃(MBG)亦為目前的主流材料。此外,溶膠-凝膠法、噴霧熱解法(Spray pyrolysis , SP)是兩種常見的製備MBG方法,雖然SP相較於溶膠-凝膠法具有低成本且快速製造時間的優勢,但是於SP的製程中使用介面活性劑時會因為燒結時間短,而導致有碳殘留的問題,且介面活性劑因缺乏高度有序的微粒結構易產生團聚現象,導致MBG的比表面積減少。為了克服上述問題,在本研究中分別添加0、25、40、50以及69 vol% 雙氧水以合成MBG。而在本實驗結果顯示具有高比表面積以及具有較高孔徑大小的樣品具有較高的藥物釋放情況。


The occurrence of the open fractures is often accompanied by complex treatment procedures. In the early stages of treatment for the open fracture, antibiotics are often required to prevent the risk of infection. In addition, in order to achieve an effective therapeutic effect, antibiotics require regular quantitative implantation for the human body. The application of the drug carrier can effectively control the release of the drug and also reduce the number of times to implant the drug into the human body. In the bone fractures of the elderly, the skeletal reparability of the elderly is relatively poor. Bioactive glass is a potential biomaterial for bone implants and drug carriers because it has excellent bioactivity and forms a hydroxyl apatite (HA) layer when immersed in body fluid. In the research of drug carriers, increasing the specific surface area and pore volume can effectively affect the drug loading of the material. One product of these studies is mesoporous bioactive glass (MBG), which has a high specific surface. The common pore-forming agents of MBG are surfactants; however, surfactants present the serious problems of micelle aggregation and carbon contamination.
To overcome these problems, hydrogen peroxide (H2O2) has been used as a pore-forming agent to replace the traditional surfactants, such as P123, and F127. In this study, 0, 25, 40, 50, and 69 vol% H2O2-treated MBG powders were synthesized using spray pyrolysis (SP). The corresponding formation mechanisms are also discussed. The results shows that samples with high specific surface area and high pore size have higher drug release.

摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VIII 表目錄 XII 第一章、 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 3 第二章、文獻回顧 4 2.1骨折 4 2.1.1人體骨骼 4 2.1.2骨折的成因 7 2.1.3 開放式骨折 9 2.2 藥物釋放 12 2.2.1藥物傳輸系統 14 2.2.2藥物載體 16 2.2.3 抗生素藥物載體 18 2.2.3.1 聚甲基丙烯酸甲酯 18 2.2.3.2 生物可降解高分子材料 19 2.2.3.4氫氧基磷灰石 21 2.3 生物活性玻璃 22 2.3.1 生物活性之機制 24 2.3.2 影響生物活性的因素 26 2.3.2.1 提升材料的比表面積 26 2.3.2.2 改變材料的化學組成 26 2.3.3 介孔生物活性玻璃 30 2.4 介孔生物活性玻璃製程方式 34 2.4.1 溶膠凝膠法 34 2.4.2 噴霧熱裂解法 38 第三章、實驗目的與方法 41 3.1 實驗設計及其目的 41 3.2 實驗原料 43 3.3 實驗儀器設備 44 3.4介孔生物活性玻璃粉體之製備與收集 45 3.5 樣品性質及分析方法 46 3.5.1 X光繞射儀 46 3.5.2場發射掃描式電子顯微鏡 48 3.5.3場發射穿透式電子顯微鏡 49 3.5.4傅立葉轉換紅外線光譜儀 50 3.5.5氮氣吸/脫附分析儀 51 3.6體外生物活性評估 52 3.7藥物釋放 53 第四章、實驗結果 54 4.1 介孔生物活性玻璃之晶體結構及形貌 54 4.1.1 X光繞射分析 54 4.1.2場發射掃描式電子顯微鏡 55 4.1.3穿透式電子顯微鏡 58 4.2介孔生物活性玻璃之比表面積及生物活性 60 4.2.1氮氣吸/脫附分析 60 4.2.2傅立葉氏轉換紅外線光譜儀分析 62 4.3藥物載體分析 65 第五章、結果討論 67 5.1介孔生物活性玻璃之成型機制探討 67 5.2介孔生物活性玻璃之比表面積與孔徑探討 69 5.3介孔生物活性玻璃之比表面積與生物活性探討 70 5.4介孔生物活性玻璃之表面積與藥物釋放探討 71 第六章、結論 74 第七章、未來工作 76 參考文獻 77

[1] D. G. Steele, The anatomy and biology of the human skeleton, Texas A and M University Press, 1988.
[2] J. J. B. Anderson, Calcium, phosphorus and human bone development, J. Nutr., 126 (1996) 1153S-1158S.
[3] M. H. Yoshimura, A. Nimura, A. Yokoyama, H. Koga, and I. Sekiya, Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle, Cell Tissue Res., 327 (2007) 449-462.
[4] B. Wittich, Keep those volunteers around, Knowledge transfer publishing, 2002.
[5] P. H. Gray, and R. Howden, The classic collector’s edition. Gray’s anatomy, New york: Churehill livingstone inc, (1977) 459-460.
[6] E. P. Solomon, Human anatomy and physiology, Saunders College Publishing, 1983.
[7] G. J. Tortora, Principles of anatomy and physiology (ed 6) harper and row, New York, 1990.
[8] https://brianrmz.weebly.com/bone-composition.html.
[9] http://www.hkpe.net/hkdsepe/fitness_nutrition/osteoporosis.htm.
[10] A.C. Guyton, Guyton human physiology and mechanism of disease, WB Saunders Co. Penn USA, 1991.
[11] K. S. Brooks, Enteral and parenteral nutrition, Present knowledge in nutrition, 7th edition, Ziegler EE, Filere Jr LJ, eds, ILSI Press Washington DC, USA, (1996) 530-539.
[12] E. N. Whitney, Table of food composition, Whitney, EN; Rolfes, SR Understanding nutrition. Belmont: ITP, cap. H (appendix), p. H-1–H-89, (1999).
[13] D. S. R. Rolfes, and E. N. Whitney, Life span nutrition: conception through life, Wadsworth Publishing Company, Inc.1998.
[14] https://studentradiographer.com/?p=3665.
[15] https://www.orthobullets.com/trauma/1003/gustilo-classification.
[16] M. R. B. Gustilo, and D. N. Williams, Problems in the management of type III (severe) open fractures: a new classification of type III open fractures, J. Trauma Acute Care 24 (1984) 742-746.
[17] A. Adler, C. Rosenberg, R. Pivec, B. H. Kapadia, V. Nadarajah, Q. Nziri, S. F. Harwin, and C. B. Paulino, In-hospital mortality following open and closed long bone fracture: A comparative study, Surg. Technol. Int. , 26 (2015) 337-342.
[18] B. K. Okike, Trends in the management of open fractures: a critical analysis, J. Bone. Joint. Surg. Am., 88 (2006) 2739-2748.
[19] D. J. Pavani, K. Nagaraju, T. Regupathi, K. N. V. Rao, and K. R. Dutt, Formulation development and in vitro evaluation of sustained release matrix tablets of tramadol hydrochloride, Innovat international journal of medical and pharmaceutical sciences, 2 (2017).
[20] A. Meyerhoff, US food and drug administration approval of AmBisome (liposomal amphotericin B) for treatment of visceral leishmaniasis, Clin. Infect. Dis., 28 (1999) 42-48.
[21] Z. S. Freiberg, Polymer microspheres for controlled drug release, Int. J. Pharm. , 282 (2004) 1-18.
[22] L. A. Z. Wang, and O. C. Farokhzad, Nanoparticle delivery of cancer drugs, Annu. Rev. Med., 63 (2012) 185-198.
[23] B. E. F. Craparo, G. Pitarresi, and G. Cavallaro, Nanoparticulate systems for drug delivery and targeting to the central nervous system, CNS Neurosci. Ther., 17 (2011) 670-677.
[24] B. S. Vrignaud, and P. Saulnier, Strategies for the nanoencapsulation of hydrophilic molecules in polymer-based nanoparticles, Biomater. , 32 (2011) 8593-8604.
[25] C. M. J. Hu, Nanoparticle-based combination therapy toward overcoming drug resistance in cancer, Biochem. Pharmacol. , 83 (2012) 1104-1111.
[26] R. M. Vallet-Regi, R. P. Del Real, and J. Pérez-Pariente, A new property of MCM-41: drug delivery system, Chem. Mater. , 13 (2001) 308-311.
[27] B. M. Vallet‐Regí, and D. Arcos, Mesoporous materials for drug delivery, Angew. Chem. Int. Ed. , 46 (2007) 7548-7558.
[28] B. M. Vallet-Regí, M. Colilla, and M. Manzano, Drug confinement and delivery in ceramic implants, Drug metabolism letters, 1 (2007) 37-40.
[29] T. P. T. Azaïs, F. Aussenac, N. Baccile, C. Coelho, J. M. Devoisselle, and F. Babonneau, Solid-state NMR study of ibuprofen confined in MCM-41 material, Chem. Mater. , 18 (2006) 6382-6390.
[30] C. L. Ward, and E. W. Davis, Controlled release of tetracycline–HCl from halloysite–polymer composite films, J. Nanosci. Nanotechno., 10 (2010) 6641-6649.
[31] T. Govender, S. Stolnik, M.C. Garnett, L. Illum, S.S. Davis, PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug, J. Controlled Release 57 (1999) 171-185.
[32] S. J. M. Anderson, Biodegradation and biocompatibility of PLA and PLGA microspheres, Adv. Drug deliv. Rev., 28 (1997) 5-24.
[33] K. Garg, Bone, Quintessence Publishing2004.
[34] T. Q. Xu, and J. T. Czernuszka, Encapsulation and release of a hydrophobic drug from hydroxyapatite coated liposomes, Biomater. , 28 (2007) 2687-2694.
[35] Y. L. Zhao, X. Zhou, L. Zhou, H. Wang, J. Tang, and C. Yu, Mesoporous bioactive glasses for controlled drug release, Microporous Mesoporous Mater. , 109 (2008) 210-215.
[36] M. P. Ginebra, T. Traykova, J.A. Planell, Calcium phosphate cements as bone drug delivery systems: a review, J. Controlled Release 113 (2006) 102-110.
[37] J. A. DiPisa, and A. T. Berman, The temperature problem at the bone-acrylic cement interface of the total hip replacement, Clin. Orthop. Relat. R., (1976) 95-98.
[38] L. Linder, Reaction of bone to the acute chemical trauma of bone cement, J. Bone. Joint. Surg. Am., 59 (1977) 82-87.
[39] P. L. Avérous, Biodegradable polymers, Environmental silicate nano-biocomposites, Springer2012, pp. 13-39.
[40] C. Bastioli, Handbook of biodegradable polymers, iSmithers Rapra Publishing2005.
[41] S. S. E. Bae, K. Park, and D. K. Han, Fabrication of covered porous PLGA microspheres using hydrogen peroxide for controlled drug delivery and regenerative medicine, J. Controlled Release 133 (2009) 37-43.
[42] W. F. Y. Cheng, C. H. Su, T. L. Tsai, P. C. Wu, D. B. Shieh, J. H. Chen, P. C. H. Hsieh, and C. S. Yeh, Stabilizer-free poly (lactide-co-glycolide) nanoparticles for multimodal biomedical probes, Biomater. , 29 (2008) 2104-2112.
[43] D. Groot, Bioceramics of calcium phosphate, J. Clin. Eng., 9 (1984) 52.
[44] D. Groot, Medical applications of calciumphosphate bioceramics, J. Ceram. Soc. Jpn. , 99 (1991) 943-953.
[45] B. M. Stigter, K. De Groot, and P. Layrolle, Incorporation of different antibiotics into carbonated hydroxyapatite coatings on titanium implants, release and antibiotic efficacy, J. Controlled Release 99 (2004) 127-137.
[46] U. V. Uskoković, Nanosized hydroxyapatite and other calcium phosphates: chemistry of formation and application as drug and gene delivery agents, J. Biomed. Mater. Res. B 96 (2011) 152-191.
[47] K. E. Verron, J. Guicheux, and J. M. Bouler, Calcium phosphate biomaterials as bone drug delivery systems: a review, Drug Discov. Today, 15 (2010) 547-552.
[48] H. K. Ariga, A. Vinu, and M. Hartmann, Biomaterials in mesoporous media: from open space to confined space, American Scientific Publishers2005.
[49] L. L. Hench, W. C. Allen, and T. K. Greenlee, Bonding mechanisms at the interface of ceramic prosthetic materials, J. Biomed. Mater. Res. A 5(1971) 117-141.
[50] L.L. Hench, Bioceramics: from concept to clinic, J. Am. Ceram. Soc. , 74 (1991) 1487-1510.
[51] P. Ducheyne, Bioceramics: material characteristics versus in vivo behavior, J. Biomed. Mater. Res., 21 (1987) 219.
[52] M. Vallet-Regí, Mesoporous silica nanoparticles: their projection in nanomedicine, ISRN Mater. Sci. , 2012 (2012).
[53] J. S. Earl, K. H. Muller, R. M. Langford, and D. C. Greenspan, Physical and chemical characterization of dentin surface following treatment with NovaMin technology, J. Clin. Dent 22 (2011) 62-67.
[54] R. Q. Chang, D. L. Chen, X. Y. Yue, L. Yu, and C. P. Zhang, An in-vitro investigation of iron-containing hydroxyapatite/titanium composites, J. Mater. Sci. Technol. , 27 (2011) 546-552.
[55] T. S. Giri, M. P. Stellmaker, and V. S. Y. Lin, Stimuli‐responsive controlled‐release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles, Angew. Chem. Int. Ed. , 44 (2005) 5038-5044.
[56] A. E. Clark, L. L. Hench, Auger spectroscopic analysis of bioglass corrosion films, J. Am. Ceram. Soc. , 59 (1976) 37-39.
[57] D. M. Sanders, Mechanisms of glass corrosion, J. Am. Ceram. Soc. , 56 (1973) 373-377.
[58] J. Wilson, An introduction to bioceramics, World scientific1993.
[59] B. Lei, Y. Wang, N. Zhao, C. Du, and L. Fang, Synthesis and bioactive properties of macroporous nanoscale SiO2–CaO–P2O5 bioactive glass, J. Non-Cryst. Solids 355 (2009) 2678-2681.
[60] J. Sun, L. Li, W. Zhao, J. Gao, M. Ruan, and J. Shi, Functionalization and bioactivity in vitro of mesoporous bioactive glasses, J. Non-Cryst. Solids 354 (2008) 3799-3805.
[61] C. J. Shih, L. F. Huang, P. S. Lu, H. F. Chang, and I. F. Chang, Synthesis and in vitro bioactivity of mesoporous bioactive glass scaffolds, Mater. Sci. Eng., C 30 (2010) 657-663.
[62] X .Yan, L. Zhao, J. Yi, H. Deng, L. Wang, G. M. Lu, and C. Yu, Synthesis and in vitro bioactivity of ordered mesostructured bioactive glasses with adjustable pore sizes, Microporous Mesoporous Mater. , 132 (2010) 282-289.
[63] G. Wei, J. Yi, L. Zhao, L. Zhou, Y. Wang, and C. Yu, Synthesis and in-vitro bioactivity of mesoporous bioactive glasses with tunable macropores, Microporous Mesoporous Mater. , 143 (2011) 157-165.
[64] C. R. Li, and L. L. Hench, An investigation of bioactive glass powders by sol‐gel processing, J. Appl. Biomater. , 2 (1991) 231-239.
[65] A. J. Jones, Bio-glasses: an introduction, John Wiley & Sons2012.
[66] M. Vallet-Regí, Evolution of bioceramics within the field of biomaterials, C. R. Chim. , 13 (2010) 174-185.
[67] I. Izquierdo-Barba, J. C. Doadrio, J. M.González-Calbet, and M. Vallet-Regí, Tissue regeneration: a new property of mesoporous materials, Solid State Sci., 7 (2005) 983-989.
[68] W.X. Z. Jinzhu, L. Lude, and X. Yingbin, Mutual transfer mechanism of crack and craze of toughening and reforceing of plastics modified by inorganic nanoparticles, Engineering plastics application, 1 (2003) 006.
[69] M. Mačković, R. Detsch, D. Mohn, W. J. Stark, E. Spiecker, A. R. Boccaccini, Bioactive glass (type 45S5) nanoparticles: in vitro reactivity on nanoscale and biocompatibility, J. Nanopart. Res. , 14 (2012) 966.
[70] Y. Li, Y. Fan, J. Ma, Thermal, physical and chemical stability of porous polystyrene-type beads with different degrees of crosslinking, Polym. Degrad. Stab. , 73 (2001) 163-167.
[71] M. Yang, B. Zibrowius, and F. Schüth, Formation of cyanide-functionalized SBA-15 and its transformation to carboxylate-functionalized SBA-15, Phys. Chem. Chem. Phys. , 6 (2004) 2461-2467.
[72] H. J. Chung, J. W. Bae, I. K. Jung, J. W. Lee, and K. D. Park, Synthesis and characterization of Pluronic® grafted chitosan copolymer as a novel injectable biomaterial, Curr. Appl. Phys., 5 (2005) 485-488.
[73] R. F. Walsh, Pressure effects on hydrogen peroxide decomposition temperature, Schafer corp calabasas ca, 2002.
[74] X. Yan, X. Zhou, J. Tang, and D. Zhao, Highly ordered mesoporous bioactive glasses with superior in vitro bone‐forming bioactivities, Angew. Chem. Int. Ed. , 43 (2004) 5980-5984.
[75] P. Mukerjee, Critical micelle concentrations of aqueous surfactant systems, National Standard reference data system, 1971.
[76] G. D. Miles, Minima in surface tension–concentration curves of solutions of sodium alcohol sulfates, J. Phys. Chem. C., 48 (1944) 57-62.
[77] https://www.google.com.tw/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwiz4ouN_ZPcAhWCVhQKHZ6RBxkQjhx6BAgBEAM&url=https%3A%2F%2Fwww.slideshare.net%2Fdrmadihamushtaque%2Fdetermination-of-cmc&psig=AOvVaw18_Qd9od8yNgo5JADJ4osa&ust=1531293001263396.
[78] R. A. Martin, J. V. Hanna, P. D. Lee, R. J. Newport, M. E. Smith, and J. R. Jones, Characterizing the hierarchical structures of bioactive sol–gel silicate glass and hybrid scaffolds for bone regeneration, Philos. Trans. R. Soc. London, Ser. A, 370 (2012) 1422-1443.
[79] J.J. Ebelmen, Prepn from abs alcohol and silicon tetrachloride, Ann, 57 (1846) 319-355.
[80] W. Geffcken, E. Berger, German patent 736,411, Google scholar, (1939).
[81] H. Dislich, New routes to multicomponent oxide glasses, Angew. Chem. Int. Ed. , 10 (1971) 363-370.
[82] J. L. Zhang, Review and modeling of viscosity of silicate melts: Part I. Viscosity of binary and ternary silicates containing CaO, MgO, and MnO, Metall. Mater. Trans. B 29 (1998) 177-186.
[83] C. F. Clement, Gas-to-particle conversion in the atmosphere: II. Analytical models of nucleation bursts, Atmos. Environ. , 33 (1999) 489-499.
[84] S. J. Shih, R. Jatnika, C. J. Shih, and K. B. Borisenko, Control of Ag nanoparticle distribution influencing bioactive and antibacterial properties of Ag‐doped mesoporous bioactive glass particles prepared by spray pyrolysis, J. Biomed. Mater. Res. B 103 (2015) 899-907.
[85] C. Y. Chen, S. C. Tsai, C. K. Lin, and H. M. Lin, Effect of precursor characteristics on zirconia and ceria particle morphology in spray pyrolysis, Ceram. Int. , 34 (2008) 409-416.
[86] S. J. Shih, C. Y. Chen, C. K. Lin, One-step synthesis and characterization of nanosized bioactive glass, J. Medi. Bio. Eng., 34 (2014) 18-23.
[87] S. J. Shih, L. Valentino Posma Panjaitan, and D. Rahayu Meyla Sari, The correlation of surfactant concentrations on the properties of mesoporous bioactive glass, Mater., 9 (2016) 58.
[88] D. S. Liu, Automated system for chemical analysis of airborne particles based on corona-free electrostatic collection, Anal. Chem. , 68 (1996) 3638-3644.
[89] M. C. Kittel, Introduction to solid state physics, Wiley New York1996.
[90] X. C. Lin, C. Z. Yu, S. Ismadji, and G. Q. M. Lu, Periodic mesoporous silica and organosilica with controlled morphologies as carriers for drug release, Microporous Mesoporous Mater. , 117 (2009) 213-219.
[91] B. O. Fowler, Infrared studies of apatites. I. Vibrational assignments for calcium, strontium, and barium hydroxyapatites utilizing isotopic substitution, Inorg. Chem. , 13 (1974) 194-207.
[92] R. J. Bell, Atomic vibrations in vitreous silica, Discuss. Faraday. Soc. , 50 (1970) 55-61.
[93] J.M. Andrews, Determination of minimum inhibitory concentrations, J. Antimicrob. Chemother. , 48 (2001) 5-16.
[94] L.L. Hench, Biomaterials: from concept to clinic, J. Am. Ceram. Soc. , 74 (1991) 1487-1510.
[95] C. W. Xia, Preparation, in vitro bioactivity and drug release property of well-ordered mesoporous 58S bioactive glass, J. Non-Cryst. Solids 354 (2008) 1338-1341.

QR CODE