簡易檢索 / 詳目顯示

研究生: 曾成維
CHENG-WEI TSENG
論文名稱: 高功率密度非隔離諧振轉換器研製
Design and Implementation of A High Power Density Non-isolated LLC Converter
指導教授: 邱煌仁
Huang-Jen Chiu
口試委員: 劉宇晨
Yu-Chen Liu
張佑丞
Yu-Chen Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 110
中文關鍵詞: 48 V 電壓調節模組高功率密度非隔離直流-直流轉換器
外文關鍵詞: 48 V voltage regulator module, High power density, Non-isolated DC-DC converter
相關次數: 點閱:206下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要 Abstract 誌謝 目錄 圖索引 表索引 第一章 緒論 1.1 研究動機與目的 1.2 降壓架構選擇 1.3 章節大綱 第二章 非隔離諧振轉換器原理分析與設計 2.1 非隔離諧振式轉換器動作原理分析 2.2 死區時間與激磁電感設計 2.2.1 汲-源級電壓動作區間分析 2.2.2 開關電流有效值計算 2.2.3 激磁電感感值設計 第三章 變壓器結構設計與分析 3.1 變壓器動作區間 3.2 鐵心結構參數化設計與分析 3.2.1 鐵心參數化分析 3.2.2 鐵心損耗 3.3 繞組並聯結構分析 3.3.1 變壓器繞組並聯分析 3.3.2 變壓器繞組磁動勢分析 3.4 鐵心最佳設計點選擇 3.4.1 總損耗與變壓器體積 3.4.2 鐵心設計點選擇 第四章 實驗測量數據與結果 4.1 實測波形 4.2 實體電路 4.3 實測數據 第五章 結論與未來展望 5.1 結論 5.2 未來展望 參考文獻

    [1] IEA (2020), "Data Centers and Data Transmission Networks", IEA, Paris,2020.[Online].Available: https://www.iea.org/reports/datacentres-and-data-transmission-networks. [Accessed: 20- October2020].
    [2] F. C. Lee, Q. Li and A. Nabih, "High Frequency Resonant Converters: An Overview on the Magnetic Design and Control Methods," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 1, pp. 11-23, Feb. 2021, doi: 10.1109/JESTPE.2020.3011166.
    [3] IEEE.tv, “KeyTalk with Xin Li and Shuai Jiang: Google 48V Power Architecture – APEC 2017.” [Online]. Available:https://ieeetv. ieee.org/ieeetv-specials/keytalk-xin-li-and-shuai-jiang-google-48v-power-architecture-apec-2017?rf=events|114&
    [4] J. Koomey, J. Taylor, and A. Group, “New data supports finding that 30 percent of servers are ‘ Comatose ’, indicating that nearly a third of capital in enterprise data centers is wasted,” 2015. [Online]. Available:
    http://anthesisgroup.com/wp-content/uploads/2015/06/Ca-eStudy_DataSupports30PercentComatoseEstimate-FINAL_06032015.pd
    [5] M. H. Ahmed, F. C. Lee, Q. Li, M. de Rooij, and D. Reusch, “Gan based high-density unregulated 48 v to x v llc converters with 98% efficiency
    [6] Y. Ren, M. Xu, K. Yao and F. C. Lee, “Two-stage 48 V Power PodExploration for 64-bit Microprocessor,” Eighteenth Annual IEEE Applied Power Electronics Conference and Exposition, 2003. APEC
    [7] M. Ahmed, C. Fei, F. C. Lee and Q. Li, "High efficiency two-stage 48V VRM with PCB winding matrix transformer," 2016 IEEE Energy Conversion Congress and Exposition (ECCE), 2016, pp. 1-8, doi: 10.1109/ECCE.2016.7855150.
    [8] S. Saggini, S. Jiang, M. Ursino and C. Nan, "A 99% Efficient Dual-Phase Resonant Switched-Capacitor-Buck Converter for 48 V Data Center Bus Conversions," 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), 2019, pp. 482-487, doi: 10.1109/APEC.2019.8721860.
    [9] D. Huang, X. Wu and F. C. Lee, "Novel non-isolated LLC resonant converters," 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 2012, pp. 1373-1380, doi: 10.1109/APEC.2012.6165999.
    [10] S. Jiang, C. Nan, X. Li, C. Chung and M. Yazdani, "Switched tank converters," 2018 IEEE Applied Power Electronics Conference and Exposition(APEC),2018,pp.8190,doi:10.1109/APEC.2018.8340992.
    [11] Y. Li, X. Lyu, D. Cao, S. Jiang and C. Nan, "A 98.55% Efficiency Switched-Tank Converter for Data Center Application," in IEEE Transactions on Industry Applications, vol. 54, no. 6, pp. 6205-6222, Nov.-Dec. 2018, doi: 10.1109/TIA.2018.2858741.
    [12] Z. Ye, Y. Lei and R. C. N. Pilawa-Podgurski, "A 48-to-12 V Cascaded Resonant Switched-Capacitor Converter for Data Centers with 99% Peak Efficiency and 2500 W/in3 Power Density," 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), 2019, pp. 13-18, doi: 10.1109/APEC.2019.8721812.
    [13] Z. Ye, Y. Lei and R. C. N. Pilawa-Podgurski, "The Cascaded Resonant Converter: A Hybrid Switched-Capacitor Topology With High Power Density and Efficiency," in IEEE Transactions on Power Electronics,vol.35,no.5,pp.4946-4958,May2020,doi: 10.1109/TPEL.2019.2947218.
    [14] T. Ge, Z. Ye, R. A. Abramson and R. C. N. Pilawa-Podgurski, "A 48-to-12 V Cascaded Resonant Switched-Capacitor Converter Achieving 4068 W/in3 Power Density and 99.0% Peak Efficiency," 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), 2021, pp. 1335-1342, doi: 10.1109/APEC42165.2021.9487264.
    [15] T. Ge, Z. Ye and R. C. N. Pilawa-Podgurski, "A 48-to-12 V Cascaded Multi-Resonant Switched Capacitor Converter with 4700 W/in3 Power Density and 98.9% Efficiency," 2021 IEEE Energy Conversion Congress and Exposition (ECCE), 2021, pp. 1959-1965, doi: 10.1109/ECCE47101.2021.9595943.
    [16] S. Webb and Y. -F. Liu, "A Zero Inductor-Voltage 48V to 12V/70A Converter for Data Centers with 99.1% Peak Efficiency and 2.5kW/in3 Power Density," 2020 IEEE Applied Power Electronics Conference and Exposition (APEC), 2020, pp. 1858-1865
    [17] S. Webb and Y. Liu, "12 Switch Zero-Inductor Voltage Converter Topology," 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), 2019, pp. 2189-2196, doi: 10.1109/APEC.2019.8722328.
    [18] S. Webb, T. Liu and Y. -F. Liu, "A Comparison of Multilevel "Zero Inductor-Voltage" Converters for Data Center Applications," 2019 IEEE Energy Conversion Congress and Exposition (ECCE), 2019, pp. 89-96, doi: 10.1109/ECCE.2019.8912999.
    [19] S. Webb and Y. -F. Liu, "A12 Switch Zero-Inductor Voltage Converter Topology For Next Generation Datacenters," 2020 IEEE Energy Conversion Congress and Exposition (ECCE), 2020, pp. 143-150, doi: 10.1109/ECCE44975.2020.9236387.
    [20] C. K. Tse, S. C. Wong and M. H. L. Chow, "On lossless switched-capacitor power converters," in IEEE Transactions on Power Electronics, vol. 10, no. 3, pp. 286-291, May 1995, doi: 10.1109/63.387993.
    [21] M. Evzelman and S. Ben-Yaakov, "Average-Current-Based Conduction Losses Model of Switched Capacitor Converters," in IEEE Transactions on Power Electronics, vol. 28, no. 7, pp. 3341-3352, July 2013, doi: 10.1109/TPEL.2012.2226060.
    [22] Y. Lei and R. C. N. Pilawa-Podgurski, "A General Method for Analyzing Resonant and Soft-Charging Operation of Switched-Capacitor Converters," in IEEE Transactions on Power Electronics, vol. 30, no. 10, pp. 5650-5664, Oct. 2015, doi: 10.1109/TPEL.2014.2377738.
    [23] P. S. Shenoy, M. Amaro, J. Morroni and D. Freeman, "Comparison of a Buck Converter and a Series Capacitor Buck Converter for High-Frequency, High-Conversion-Ratio Voltage Regulators," in IEEE Transactions on Power Electronics, vol. 31, no. 10, pp. 7006-7015, Oct. 2016, doi: 10.1109/TPEL.2015.2508018.
    [24] C. Fei, M. H. Ahmed, F. C. Lee and Q. Li, "Two-Stage 48 V-12 V/6V-1.8 V Voltage Regulator Module With Dynamic Bus Voltage Controlfor Light-Load Efficiency Improvement," in IEEE Transactionson Power Electronics, vol. 32, no. 7, pp. 5628-5636, July 2017, doi:10.1109/TPEL.2016.2605579.
    [25] Datasheet ISC012N04LM6 OptiMOS™ 6 power MOSFET 40 V [Online].Available:
    https://www.infineon.com/dgdl/Infineon-ISC012N04LM6-DataSheet-v02_00-EN.pdf?fileId=5546d46278d64ffd01790dfac61a4860
    [26] D. Lin, P. Zhou, W. N.Fu, Z. Badics and Z. J. Cendes,“A Dynamic Core Loss Model for Soft Ferromagnetic and Power Ferrite Materials in Transient Finite Element Analysis,”in IEEE Transactions on Magnetics,vol. 40, no. 2, pp. 1318-1321, March 2004, doi: 10.1109/TMAG.2004.825025.
    [27] P. L. Dowell, "Effects of Eddy Currents in Transformer Windings," inProceedings of the Institution of Electrical Engineers, vol. 113, no. 8,pp. 1387-1394, August 1966, doi: 10.1049/piee.1966.0236.
    [28] H. Cui and K. D. T. Ngo, “Transient Core-Loss Simulation for Ferrites With Nonuniform Field in SPICE,” in IEEE Transactions on Power Electronics, vol. 34, no. 1, pp. 659-667, Jan. 2019, doi:10.1109/TPEL.2018.2812856.
    [29] Tan, Linlin & Yang, xu & Yuwen, Dian. (2016). Optimization de-sign of planar transformer in DC-DC converter. 10.2991/aest-16.2016.125.
    [30] J. Schäfer, D. Bortis and J. W. Kolar, "Novel Highly Efficient/Compact Automotive PCB Winding Inductors Based on the Compensating Air-Gap Fringing Field Concept," in IEEE Transactions on Power Electronics, vol. 35, no. 9, pp. 9617-9631, Sept. 2020, doi:13810.1109/TPEL.2020.2969295.

    無法下載圖示 全文公開日期 2024/08/23 (校內網路)
    全文公開日期 2024/08/23 (校外網路)
    全文公開日期 2024/08/23 (國家圖書館:臺灣博碩士論文系統)
    QR CODE