簡易檢索 / 詳目顯示

研究生: NGUYEN THI ANH TUYET
NGUYEN THI ANH TUYET
論文名稱: 支援再生能源採用經濟可行性分析之研究
Economic Feasibility Study for Supporting Renewable Energy Adoption
指導教授: 周碩彥
Shuo-Yan Chou
郭伯勳
Po-Hsun Kuo
口試委員: 周碩彥
Shuo-Yan Chou
郭伯勳
Po-Hsun Kuo
喻奉天
Vincent Feng-Tien Yu
王孔政
Kung-Jen Wang
Jen-Ming Chen
Jen-Ming Chen
陳彥良
Yen-Liang Chen
學位類別: 博士
Doctor
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 147
中文關鍵詞: Renewable energyEconomic analysisMaintenance optimizationGovernment subsidiesDynamic programmingCost-effective maintenance
外文關鍵詞: Renewable energy, Economic analysis, Maintenance optimization, Government subsidies, Dynamic programming, Cost-effective maintenance
相關次數: 點閱:295下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近幾十年來 , 科技的巨大成就促進了可再生能源的發展 , 不但滿足未來能源供
應需求 , 也有效保護生態環境 . 近期出現大量可再生能源對於經濟評估之不確定性的
研究 . 然而 , 考慮各種參數所產生之影響的研究仍屬少數 , 特別是那些仔細考慮優化
維護策略 , 政府財政補貼和動態天氣條件影響的研究 . 本研究提出了在政府財政補貼 ,
動態天氣條件(包括颱風), 稅收 , 投資者期望 , 最優維修時間表等影響下評估太陽
能發電系統(PV)和海上風力發電系統等可再生能源的經濟可行性方法 . 在實際的天
氣條件下產生電力 , 減少二氧化碳排放 . 為了提高準確性並解決經濟評估的不確定性 ,
本研究提出了一種確定海上風力發電系統的最佳維修計劃方法 , 使維護成本最小化 .
透過經濟標準 , 評估目前台灣政府補貼的實施狀況 , 其還是有些表現不足之處 . 本研
究進一步提出更適當的政府補貼策略 , 不但滿足投資者期望也達成政府的標準 . 這項
研究有助於更好地了解與可再生能源有關的問題 , 以及最佳化維修 , 並提供大量信息 ,
在幫助投資者與政府決策者做出正確決策之中扮演著重要的角色


In recent decades, advantageous achievements of the technology have promoted the
expansion of renewable energy for meeting future energy supply needs and ensuring
environmental protection. A huge number of researches have emerged recently to deal with
the uncertainty of economic evaluation of renewable energy sources. However, the
researches considering the effects of various influential parameters remain small and
limited, especially those that consider thoughtfully the impacts of maintenance strategy
optimization, government subsidies, and dynamic weather conditions. This study proposes
approaches to assess the economic feasibility of renewable energy sources such as
Photovoltaic (PV) system and offshore wind system, under influences of government
financial subsidies, dynamic weather conditions (including typhoon), taxation, expectation
of investor, optimal maintenance schedule, generated electricity under real weather
conditions, and benefits from reduction of CO2 emission. To increase the accuracy and to
deal with the uncertainty of economic evaluation, this study also proposes an approach to
determine the optimal maintenance schedule for offshore wind system, such that
maintenance cost is minimized. Through economic criteria, the currently applied subsidies
of Taiwan government are assessed and shown some deficiencies. This study further
proposes more appropriate subsidies for government in term of satisfying both of investor’s
expectation and government’s target. This study contributes to better understanding of the
problems related to renewable energy sources, maintenance optimization, and provides
quantitative information that play a critical role in supporting decisions of both investors
and government policy-makers.

TABLE OF CONTENTS 摘 要....................................................................................................................................... I ABSTRACT...........................................................................................................................II ACKNOWLEDGEMENT.................................................................................................. III TABLE OF CONTENTS .....................................................................................................V LIST OF FIGURES ......................................................................................................... VIII LIST OF TABLES................................................................................................................X LIST OF ABBREVIATIONS ............................................................................................ XI CHAPTER 1: INTRODUCTION.........................................................................................1 1.1 Research background and motivation ..........................................................................1 1.2 Research objective and contribution .............................................................................5 1.3. Organization of dissertation ..........................................................................................9 CHAPTER 2: LITERATURE REVIEW..........................................................................10 2.1 Renewable energy policies..........................................................................................10 2.2 Renewable energy development in Taiwan ................................................................18 2.2.1 Taiwan subsidies for PV energy ...........................................................................22 2.2.2 Taiwan subsidies for offshore wind energy..........................................................24 2.3 Energy policies on carbon dioxide emission...............................................................26 2.4 Review on maintenance strategies ..............................................................................27 2.5 Degradation model of wind turbine ............................................................................31 VI CHAPTER 3: GENERATED ELECTRICITY OF OFFSHORE WIND ENERGY AND SOLAR PV ENERGY................................................................................................37 3.1 Generated electricity model of offshore wind energy.................................................39 3.2 Generated electricity model of solar PV energy .........................................................43 3.3 Experimental results....................................................................................................44 3.3.1 Generated electricity result of offshore wind system ...........................................44 3.3.2 Generated electricity result of solar PV system....................................................49 CHAPTER 4: MAINTENANCE STRATEGY OPTIMIZATION FOR OFFSHORE WIND SYSTEMS.................................................................................................................54 4.1 Model development.....................................................................................................55 4.1.1 Overview of proposed approach ...........................................................................55 4.1.2 Dynamic individual maintenance optimization approach.....................................57 4.1.3 Grouping maintenance optimization approach .....................................................61 4.2 Experimental results....................................................................................................65 4.2.1 Input data ..............................................................................................................65 4.2.2 Individual maintenance schedule results ..............................................................66 4.2.3 Grouping maintenance schedule results ...............................................................70 CHAPTER 5: IMPACT OF GOVERNMENT SUBSIDIES ON ECONOMIC FEASIBILITY OF RENEWABLE ENERGY..................................................................74 5.1 Economic evaluation model of offshore wind system ................................................77 5.1.1 Benefit model under impact of government subsidies..........................................78 5.1.2 Cost model ............................................................................................................81 VII 5.1.3 Cost-effective analysis of offshore wind system under impact of government subsidies................................................................................................................83 5.2 Economic evaluation model of solar PV system ........................................................85 5.3 Experimental results....................................................................................................88 5.3.1 Offshore wind system ...........................................................................................88 5.3.2 Solar PV system....................................................................................................93 CHAPTER 6: METHODS FOR SELECTING THE MOST APPROPRIATE ENERGY POLICIES ..........................................................................................................98 6.1 Selecting the most appropriate policy for solar PV system without a pre-defined set of policies ......................................................................................................................100 6.2 Selecting the most appropriate policy for solar PV system with a pre-defined set of policies ......................................................................................................................102 6.3 Experimental results..................................................................................................105 6.3.1. Implication for selecting policy without a pre-defined set of policies................105 6.3.2. Implication for selecting policy with a pre-defined set of policies.....................107 6.4 Sensitive analysis: Two scenarios for subsidizing for offshore wind system...........108 6.4.1 Scenario 1: subsidy on capital cost for offshore wind system ............................108 6.4.2 Scenario 2: FIT subsidy for offshore wind system.............................................110 CHAPTER 7: CONCLUSION AND DISCUSSION ......................................................113 7.1 Conclusions of the research ......................................................................................113 7.2 Limitations and future research.................................................................................116 REFERENCES...................................................................................................................118

[1] R. Adib, H. Murdock, F. Appavou, A. Brown, B. Epp, A. Leidreiter, et al. Renewables
2016 Global Status Report. Global Status Report RENEWABLE ENERGY POLICY
NETWORK FOR THE 21st CENTURY (REN21). (2016) 272.
[2] C. Lins, L.E. Williamson, S. Leitner, S. Teske. The first decade: 2004—2014: 10 years
of renewable energy progress. Renewable Energy Policy Network for the 21st Century.
(2014).
[3] J.L. Sawin, F. Sverrisson, K. Seyboth, R. Adib, H.E. Murdock, C. Lins, et al.
Renewables 2017 Global Status Report. (2013).
[4] Bureau of Energy (BOE). Energy Statistics Handbook 2015. Ministry of Economic
Affairs. (2016).
[5] H.H. Chen, A.H. Lee. Comprehensive overview of renewable energy development in
Taiwan. Renewable and Sustainable Energy Reviews. 37 (2014) 215-28.
[6] R. Cossent, T. Gómez, L. Olmos. Large-scale integration of renewable and distributed
generation of electricity in Spain: Current situation and future needs. Energ Policy. 39
(2011) 8078-87.
[7] G.K. Singh. Solar power generation by PV (photovoltaic) technology: A review. Energy.
53 (2013) 1-13.
[8] S. Mekhilef, R. Saidur, M. Kamalisarvestani. Effect of dust, humidity and air velocity on
efficiency of photovoltaic cells. Renewable and sustainable energy reviews. 16 (2012)
2920-5.
119
[9] F. Almonacid, C. Rus, P. Pérez, L. Hontoria. Estimation of the energy of a PV generator
using artificial neural network. Renew Energ. 34 (2009) 2743-50.
[10] S. Astariz, G. Iglesias. Accessibility for operation and maintenance tasks in co-located
wind and wave energy farms with non-uniformly distributed arrays. Energy Conversion
and Management. 106 (2015) 1219-29.
[11] B. Kerres, K. Fischer, R. Madlener. Economic evaluation of maintenance strategies for
wind turbines: a stochastic analysis. Iet Renew Power Gen. 9 (2015) 766-74.
[12] I. Bouwer Utne. Maintenance strategies for deep-sea offshore wind turbines. Journal of
Quality in Maintenance Engineering. 16 (2010) 367-81.
[13] C.-H. Liao, H.-H. Ou, Y.-H. Yu. Analysis of renewable energy policies in Taiwan. J
Environ Eng Manage. 20 (2010) 195e201.
[14] S. Emanuelsson. Feed-in Tariffs for Renewable Energy and the WTO Agreement on
Subsidies and Countervaling Measures. Are Feed-in Tariffs Specific Subsidies? (2015).
[15] K. Lo. A critical review of China's rapidly developing renewable energy and energy
efficiency policies. Renewable and Sustainable Energy Reviews. 29 (2014) 508-16.
[16] K. Cory, T. Couture, C. Kreycik. Feed-in tariff policy: design, implementation, and
RPS policy interactions. National Renewable Energy Lab.(NREL), Golden, CO (United
States)2009.
[17] D. McGinn, D. Green, R. Hinrichs-rahlwes, S. Sawyer, M. Sander, R. Taylor, et al.
Renewables 2013 Global Status Report. REN21 Renewable Energy Policy Network.
(2013).
120
[18] B. Rabe. Race to the top: The expanding role of US state renewable portfolio standards.
Sustainable Dev L & Pol'y. 7 (2006) 10.
[19] S. Berg. What is the best choice of regulatory instruments/tools for Renewable Energy
promotion based on efficiency and effectiveness of reaching policy targets (FIT versus
Green Certificates versus Central Procurement and others)? Body of Knowledge on
Infrastructure regulation.
Available at: http://regulationbodyofknowledgeorg/faq/renewable-energy-and-energyefficiency/
what-is-the-best-choice-of-regulatory-instrumentstools-for-renewable-energypromotion-
based-on-efficiency-and-effectiveness-of-reaching-policy-targets-fit-versusgreen-
certificates-versus-central-pr/. (2012).
[20] W.-M. Chen, H. Kim, H. Yamaguchi. Renewable energy in eastern Asia: Renewable
energy policy review and comparative SWOT analysis for promoting renewable energy
in Japan, South Korea, and Taiwan. Energ Policy. 74 (2014) 319-29.
[21] C.-T. Chang, H.-C. Lee. Taiwan's renewable energy strategy and energy-intensive
industrial policy. Renewable and Sustainable Energy Reviews. 64 (2016) 456-65.
[22] A. Jager-Waldau. PV status report 2012. JRC Scientific and Policy Reports. (2012).
[23] K. Buysse, A. Verbeke. Proactive environmental strategies: A stakeholder management
perspective. Strategic management journal. 24 (2003) 453-70.
[24] C.-C. Lo, C.-H. Wang, C.-C. Huang. The national innovation system in the Taiwanese
photovoltaic industry: A multiple stakeholder perspective. Technological Forecasting
and Social Change. 80 (2013) 893-906.
121
[25] J.J. Hwang. Promotional policy for renewable energy development in Taiwan.
Renewable and Sustainable Energy Reviews. 14 (2010) 1079-87.
[26] P. Del Río, P. Mir-Artigues. Support for solar PV deployment in Spain: Some policy
lessons. Renewable and Sustainable Energy Reviews. 16 (2012) 5557-66.
[27] D.R. Ponnampalam, S.-H. Chen, A.M.-Z. Gao. Incorporating a Tendering System into
Feed-In Tariff (FIT) Schemes in Developing Photovoltaic Power -The Experience of
Taiwan’s FIT Reform. 2012 International Conference on Clean and Green Energy. 27
(2012).
[28] The offshore wind power industry in Taiwan. Flanders Investment & Trade. (2014).
[29] P.-Y. Chu, Y.-L. Lin, C.-S. Guo. The Effect of Ecological Elasticity in Taiwan’s
Carbon Reduction Policies: The STIRPAT Model. Journal of Management and
Sustainability. 6 (2016) 121.
[30] C.-Y. Liang, R.-H. Jheng. The impact assessment of various carbon tax rate on the
economy and CO2 emission of Taiwan. Sustainable Energy Policy and Strategies for
Europe, 14th IAEE European Conference, October 28-31, 2014. International
Association for Energy Economics2014.
[31] K.-C. Lu, K.-Y. Liu. Taiwan's Major Emission Challenges. Common Wealth Magazine
588 Available at: <http://englishcwcomtw/article/articleaction?id=143>. (2015).
[32] Y.-H. Huang, J.-H. Wu. Energy policy in Taiwan: Historical developments, current
status and potential improvements. Energies. 2 (2009) 623-45.
[33] C.C. Liu. The evaluation of the impact of introducing energy tax to reduce CO2
emissions in Taiwan. Taiwan Research Institute. (2006).
122
[34] F. Besnard. On maintenance optimization for offshore wind farms. Chalmers
University of Technology2013.
[35] M. Shafiee. Maintenance logistics organization for offshore wind energy: Current
progress and future perspectives. Renew Energ. 77 (2015) 182-93.
[36] R. Panneerselvam. Production and operations management. PHI Learning Pvt.
Ltd.2012.
[37] J. Barabady, U. Kumar. Maintenance schedule by using reliability analysis: a case
study at jajarm bauxite mine of iran. World Mining Congress: 07/11/2005-11/11/2005.
Geological Survey of Iran2005.
[38] C.A. Irawan, D. Ouelhadj, D. Jones, M. Stålhane, I.B. Sperstad. Optimisation of
maintenance routing and scheduling for offshore wind farms. European Journal of
Operational Research. 256 (2017) 76-89.
[39] C. Zhang, W. Gao, S. Guo, Y. Li, T. Yang. Opportunistic maintenance for wind
turbines considering imperfect, reliability-based maintenance. Renew Energ. 103 (2017)
606-12.
[40] K.B. Bagshaw. A review and analysis of plant maintenance and replacement strategies
of manufacturing firms in Nigeria. African Journal of Business Management. 11 (2017)
17-26.
[41] A. Monga, M.J. Zuo. Optimal design of series-parallel systems considering
maintenance and salvage value. Comput Ind Eng. 40 (2001) 323-37.
[42] G.M.J. Herbert, S. Iniyan, R. Goic. Performance, reliability and failure analysis of wind
farm in a developing Country. Renew Energ. 35 (2010) 2739-51.
123
[43] T. Yong. Extended Weibull distributions in reliability engineering. 2004.
[44] F. Besnard, M. Patriksson, A.B. Stromberg, A. Wojciechowski, L. Bertling. An
Optimization Framework for Opportunistic Maintenance of Offshore Wind Power
System. 2009 Ieee Bucharest Powertech, Vols 1-5. (2009) 2970-6.
[45] E. Byon, Y. Ding. Season-Dependent Condition-Based Maintenance for a Wind
Turbine Using a Partially Observed Markov Decision Process. Ieee T Power Syst. 25
(2010) 1823-34.
[46] S. Dawley. Creating New Paths? Offshore Wind, Policy Activism, and Peripheral
Region Development. Econ Geogr. 90 (2014) 91-112.
[47] H.F. Fang. Wind energy potential assessment for the offshore areas of Taiwan west
coast and Penghu Archipelago. Renew Energ. 67 (2014) 237-41.
[48] J.S. González, M.B. Payán, J.M.R. Santos. Optimal design of neighbouring offshore
wind farms: A co-evolutionary approach. Applied Energy. 209 (2018) 140-52.
[49] Y.H. Huang, J.H. Wu. A transition toward a market expansion phase: Policies for
promoting wind power in Taiwan. Energy. 34 (2009) 437-47.
[50] S.C. Lee, L.H. Shih. Enhancing renewable and sustainable energy development based
on an options-based policy evaluation framework: Case study of wind energy
technology in Taiwan. Renew Sust Energ Rev. 15 (2011) 2185-98.
[51] C.J. Lin, O.S. Yu, C.L. Chang, Y.H. Liu, Y.F. Chuang, Y.L. Lin. Challenges of wind
farms connection to future power systems in Taiwan. Renew Energ. 34 (2009) 1926-30.
[52] H.M. Liou. Wind power in Taiwan: Policy and development challenges. Energ Policy.
39 (2011) 3238-51.
124
[53] T.A.T. Nguyen, S.-Y. Chou. Maintenance strategy selection for improving costeffectiveness
of offshore wind systems. Energy Conversion and Management. 157
(2018) 86-95.
[54] G. Ren, J. Liu, J. Wan, Y. Guo, D. Yu. Overview of wind power intermittency:
Impacts, measurements, and mitigation solutions. Applied Energy. 204 (2017) 47-65.
[55] B.R. Sarker, T. Ibn Faiz. Minimizing maintenance cost for offshore wind turbines
following multi-level opportunistic preventive strategy. Renew Energ. 85 (2016) 104-13.
[56] P.M. Soares, D.C. Lima, R.M. Cardoso, M.L. Nascimento, A. Semedo. Western Iberian
offshore wind resources: More or less in a global warming climate? Applied Energy.
203 (2017) 72-90.
[57] J. Voormolen, H. Junginger, W. Van Sark. Unravelling historical cost developments of
offshore wind energy in Europe. Energ Policy. 88 (2016) 435-44.
[58] J. Wang, T. Niu, H. Lu, Z. Guo, W. Yang, P. Du. An analysis-forecast system for
uncertainty modeling of wind speed: A case study of large-scale wind farms. Applied
Energy. 211 (2018) 492-512.
[59] Y.-K. Wu, C.-Y. Lee, G.-H. Shu. Taiwan's first large-scale offshore wind farm
connection—A real project case study with a comparison of wind turbine. Ieee T Ind
Appl. 47 (2011) 1461-9.
[60] R. Yuan, W. Ji, K. Luo, J. Wang, S. Zhang, Q. Wang, et al. Coupled wind farm
parameterization with a mesoscale model for simulations of an onshore wind farm.
Applied Energy. 206 (2017) 113-25.
125
[61] P. Bresesti, W.L. Kling, R.L. Hendriks, R. Vailati. HVDC connection of offshore wind
farms to the transmission system. Ieee T Energy Conver. 22 (2007) 37-43.
[62] S. Chuangpishit, A. Tabesh, Z. Moradi-Shahrbabak, M. Saeedifard. Topology Design
for Collector Systems of Offshore Wind Farms With Pure DC Power Systems. Ieee T
Ind Electron. 61 (2014) 320-8.
[63] P. Hou, P. Enevoldsen, W. Hu, C. Chen, Z. Chen. Offshore wind farm repowering
optimization. Applied Energy. 208 (2017) 834-44.
[64] W.-T. Liu, Y.-K. Wu, C.-Y. Lee, C.-R. Chen. Effect of low-voltage-ride-through
technologies on the first Taiwan offshore wind farm planning. Ieee T Sustain Energ. 2
(2011) 78-86.
[65] X. Liu, C. Lu, G. Li, A. Godbole, Y. Chen. Effects of aerodynamic damping on the
tower load of offshore horizontal axis wind turbines. Applied Energy. (2017).
[66] C. Meyer, M. Hoing, A. Peterson, R.W. De Doncker. Control and design of DC grids
for offshore wind farms. Ieee T Ind Appl. 43 (2007) 1475-82.
[67] B.K. Sovacool, P. Enevoldsen. One style to build them all: Corporate culture and
innovation in the offshore wind industry. Energ Policy. 86 (2015) 402-15.
[68] A. Ulazia, J. Sáenz, G. Ibarra-Berastegui, S.J. González-Rojí, S. Carreno-Madinabeitia.
Using 3DVAR data assimilation to measure offshore wind energy potential at different
turbine heights in the West Mediterranean. Applied Energy. 208 (2017) 1232-45.
[69] Q. Vanhellemont, K. Ruddick. Turbid wakes associated with offshore wind turbines
observed with Landsat 8. Remote Sens Environ. 145 (2014) 105-15.
126
[70] X. Wang, X. Zeng, X. Yang, J. Li. Feasibility study of offshore wind turbines with
hybrid monopile foundation based on centrifuge modeling. Applied Energy. 209 (2018)
127-39.
[71] C. Gavard. Carbon price and wind power support in Denmark. Energ Policy. 92 (2016)
455-67.
[72] D.W. Bunn, J.I. Muñoz. Supporting the externality of intermittency in policies for
renewable energy. Energ Policy. 88 (2016) 594-602.
[73] J. Nordensvärd, F. Urban. The stuttering energy transition in Germany: Wind energy
policy and feed-in tariff lock-in. Energ Policy. 82 (2015) 156-65.
[74] S. Fast, W. Mabee. Place-making and trust-building: The influence of policy on host
community responses to wind farms. Energ Policy. 81 (2015) 27-37.
[75] C.A. Friebe, P. von Flotow, F.A. Täube. Exploring technology diffusion in emerging
markets–the role of public policy for wind energy. Energ Policy. 70 (2014) 217-26.
[76] C. Wüstemeyer, R. Madlener, D.W. Bunn. A stakeholder analysis of divergent supplychain
trends for the European onshore and offshore wind installations. Energ Policy. 80
(2015) 36-44.
[77] Z.F. Liu, W.H. Zhang, C.H. Zhao, J.H. Yuan. The Economics of Wind Power in China
and Policy Implications. Energies. 8 (2015) 1529-46.
[78] C.-D. Yue, C.-M. Liu, E.M. Liou. A transition toward a sustainable energy future:
feasibility assessment and development strategies of wind power in Taiwan. Energ
Policy. 29 (2001) 951-63.
127
[79] J.A. Andrawus, J. Watson, M. Kishk, A. Adam. The selection of a suitable maintenance
strategy for wind turbines. Wind Engineering. 30 (2006) 471-86.
[80] W. Wang. An overview of the recent advances in delay-time-based maintenance
modelling. Reliability Engineering & System Safety. 106 (2012) 165-78.
[81] M. Hofmann. A review of decision support models for offshore wind farms with an
emphasis on operation and maintenance strategies. Wind Engineering. 35 (2011) 1-15.
[82] L. Rademakers, H. Braam, M.B. Zaaijer, G.v. Bussel. Assessment and optimisation of
operation and maintenance of offshore wind turbines. ECN Wind Energy Report ECNRX-
03-044. (2003).
[83] I. El-Thalji, J.P. Liyanage. On the operation and maintenance practices of wind power
asset: A status review and observations. Journal of Quality in Maintenance Engineering.
18 (2012) 232-66.
[84] M. Scheu, D. Matha, M. Hofmann, M. Muskulus. Maintenance strategies for large
offshore wind farms. Energy Procedia. 24 (2012) 281-8.
[85] F. Besnard, L. Bertling. An approach for condition-based maintenance optimization
applied to wind turbine blades. Ieee T Sustain Energ. 1 (2010) 77-83.
[86] M. Shafiee, M. Finkelstein, C. Bérenguer. An opportunistic condition-based
maintenance policy for offshore wind turbine blades subjected to degradation and
environmental shocks. Reliability Engineering & System Safety. 142 (2015) 463-71.
[87] Z. Tian, T. Jin, B. Wu, F. Ding. Condition based maintenance optimization for wind
power generation systems under continuous monitoring. Renew Energ. 36 (2011) 1502-
9.
128
[88] L. Dai, M. Stålhane, I.B. Utne. Routing and scheduling of maintenance fleet for
offshore wind farms. Wind Engineering. 39 (2015) 15-30.
[89] S. Afanasyeva, J. Saari, M. Kalkofen, J. Partanen, O. Pyrhonen. Technical, economic
and uncertainty modelling of a wind farm project. Energy Conversion and Management.
107 (2016) 22-33.
[90] L.K. Gan, J.K. Shek, M.A. Mueller. Hybrid wind–photovoltaic–diesel–battery system
sizing tool development using empirical approach, life-cycle cost and performance
analysis: A case study in Scotland. Energy Conversion and Management. 106 (2015)
479-94.
[91] Y. Wu, Y. Hu, X. Xiao, C. Mao. Efficiency assessment of wind farms in China using
two-stage data envelopment analysis. Energy Conversion and Management. 123 (2016)
46-55.
[92] S.H. Siyal, D. Mentis, M. Howells. Mapping key economic indicators of onshore wind
energy in Sweden by using a geospatial methodology. Energy Conversion and
Management. 128 (2016) 211-26.
[93] N.H. Abu-Hamdeh, K.H. Almitani. Construction and numerical analysis of a
collapsible vertical axis wind turbine. Energy Conversion and Management. 151 (2017)
400-13.
[94] A. Aghajani, R. Kazemzadeh, A. Ebrahimi. A novel hybrid approach for predicting
wind farm power production based on wavelet transform, hybrid neural networks and
imperialist competitive algorithm. Energy Conversion and Management. 121 (2016)
232-40.
129
[95] A. Ebrahimi, M. Movahhedi. Power improvement of NREL 5-MW wind turbine using
multi-DBD plasma actuators. Energy Conversion and Management. 146 (2017) 96-106.
[96] M. Ghasemian, Z.N. Ashrafi, A. Sedaghat. A review on computational fluid dynamic
simulation techniques for Darrieus vertical axis wind turbines. Energy Conversion and
Management. 149 (2017) 87-100.
[97] G. Gualtieri. Improving investigation of wind turbine optimal site matching through the
self-organizing maps. Energy Conversion and Management. 143 (2017) 295-311.
[98] T. Ouyang, X. Zha, L. Qin. A combined multivariate model for wind power prediction.
Energy Conversion and Management. 144 (2017) 361-73.
[99] A. Rezaeiha, I. Kalkman, H. Montazeri, B. Blocken. Effect of the shaft on the
aerodynamic performance of urban vertical axis wind turbines. Energy Conversion and
Management. 149 (2017) 616-30.
[100] O. Alavi, A. Sedaghat, A. Mostafaeipour. Sensitivity analysis of different wind speed
distribution models with actual and truncated wind data: a case study for Kerman, Iran.
Energy Conversion and Management. 120 (2016) 51-61.
[101] J. Dai, Y. Tan, W. Yang, L. Wen, X. Shen. Investigation of wind resource
characteristics in mountain wind farm using multiple-unit SCADA data in Chenzhou: A
case study. Energy Conversion and Management. 148 (2017) 378-93.
[102] J. Feng, W.Z. Shen. Wind farm power production in the changing wind: Robustness
quantification and layout optimization. Energy Conversion and Management. 148
(2017) 905-14.
130
[103] C. Jung, D. Schindler. Global comparison of the goodness-of-fit of wind speed
distributions. Energy Conversion and Management. 133 (2017) 216-34.
[104] C. Ozay, M.S. Celiktas. Statistical analysis of wind speed using two-parameter
Weibull distribution in Alaçatı region. Energy Conversion and Management. 121 (2016)
49-54.
[105] J.M.P. Perez, F.P.G. Marquez, A. Tobias, M. Papaelias. Wind turbine reliability
analysis. Renew Sust Energ Rev. 23 (2013) 463-72.
[106] Y. Chen, H. Li, B. He, P. Wang, K. Jin. Multi-objective genetic algorithm based
innovative wind farm layout optimization method. Energy Conversion and Management.
105 (2015) 1318-27.
[107] J.J. Nielsen, J.D. Sørensen. On risk-based operation and maintenance of offshore wind
turbine components. Reliability Engineering & System Safety. 96 (2011) 218-29.
[108] R. Martin, I. Lazakis, S. Barbouchi, L. Johanning. Sensitivity analysis of offshore
wind farm operation and maintenance cost and availability. Renew Energ. 85 (2016)
1226-36.
[109] E. Byon. Wind turbine operations and maintenance: a tractable approximation of
dynamic decision making. Iie Trans. 45 (2013) 1188-201.
[110] Z. Hameed, J. Vatn. Role of grouping in the development of an overall maintenance
optimization framework for offshore wind turbines. P I Mech Eng O-J Ris. 226 (2012)
584-601.
[111] F. Besnard, J. Nilsson, L. Bertling. On the economic benefits of using condition
monitoring systems for maintenance management of wind power systems. Probabilistic
131
Methods Applied to Power Systems (PMAPS), 2010 IEEE 11th International
Conference on. IEEE2010. pp. 160-5.
[112] T. Ackermann. Wind power in power systems. John Wiley & Sons2005.
[113] W. Tong. Wind power generation and wind turbine design. WIT press2010.
[114] B. Zhu, M.-y. Chen, N. Wade, L. Ran. A prediction model for wind farm power
generation based on fuzzy modeling. Procedia Environmental Sciences. 12 (2012) 122-
9.
[115] E. Hau. Wind turbines: fundamentals, technologies, application, economics. Springer
Science & Business Media2013.
[116] B. Lange, S.E. Larsen, J. Højstrup, R. Barthelmie. The wind speed profile at offshore
wind farm sites. European Seminar Offshore Wind Energy in Mediterranean and Other
European Seas2002. pp. 19-33.
[117] F. Blaabjerg, Z. Chen, S.B. Kjaer. Power electronics as efficient interface in dispersed
power generation systems. Ieee T Power Electr. 19 (2004) 1184-94.
[118] R. Gasch, J. Twele. Wind power plants: fundamentals, design, construction and
operation. Springer Science & Business Media2011.
[119] J. Rosell, M. Ibanez. Modelling power output in photovoltaic modules for outdoor
operating conditions. Energy Conversion and Management. 47 (2006) 2424-30.
[120] E. Skoplaki, A. Boudouvis, J. Palyvos. A simple correlation for the operating
temperature of photovoltaic modules of arbitrary mounting. Solar Energy Materials and
Solar Cells. 92 (2008) 1393-402.
132
[121] J.S. Griffith, M.S. Rathod, J. Paslaski. Some tests of flat plate photovoltaic module
cell temperatures in simulated field conditions. 15th Photovoltaic Specialists
Conference1981. pp. 822-30.
[122] V.W.S. A/S. Vestas V90-3MW brochue. Available at:
https://www.vestas.com/en/products/turbines/v90-3_0_mw#!power-curve. (2017).
[123] L. Hong, B. Möller. Offshore wind energy potential in China: under technical, spatial
and economic constraints. Energy. 36 (2011) 4482-91.
[124] P.-C. Chang, R.-Y. Yang, C.-M. Lai. Potential of Offshore Wind Energy and Extreme
Wind Speed Forecasting on the West Coast of Taiwan. Energies. 8 (2015) 1685.
[125] R. M.R. Wind power systems. University of Puerto Rico. Available at:
http://wwwuprmedu/aret/docs/Ch_2_Windpdf. (2008).
[126] M. Obrecht. Would internalisation of external costs change cost-competitiveness of
different energy sources? Journal of Contemporary Economic and Business Issues. 1
(2014) 55-66.
[127] B. Green. Taiwan plans taxes for energy and CO2 emissions by 2011. Retrieved from:
<https://wwwbusinessgreencom/bg/news/1800579/taiwan-plans-taxes-energy-co2-
emissions-2011>. (2009).
[128] Taiwan Tax Guide 2015/16. PKF International Limited. Available at:
<https://wwwpkfcom/media/10026059/taiwan-tax-guide-2015-16pdf>. (2015).
[129] J. Ho, K. Chen, E. Wu. Taiwan Tax Profile. KPMG International Corrperative
Cooperative
133
Available at: <https://homekpmgcom/content/dam/kpmg/pdf/2015/10/taiwan-2015pdf>.
(2015).
[130] M. Ragheb. Economics of wind energy. Retrieved from:
<http://mraghebcom/NPRE%20475%20Wind%20Power%20Systems/Economics%20of
%20Wind%20Energypdf>. (2017).
[131] W.G. Sullivan, E.M. Wicks, J.T. Luxhoj. Engineering Economy. Pearson Prentice
Hall. (2006).
[132] International renewable energy agency. Renewable energy technologies: cost analysis
series. (2012).
[133] L. Arany, S. Bhattacharya, J.H. Macdonald, S.J. Hogan. Closed form solution of
Eigen frequency of monopile supported offshore wind turbines in deeper waters
incorporating stiffness of substructure and SSI. Soil Dynamics and Earthquake
Engineering. 83 (2016) 18-32.
[134] S. Malhotra. Selection, design and construction of offshore wind turbine foundations.
Wind turbines. InTech2011.
[135] J.L. Silveira, C.E. Tuna, W. de Queiroz Lamas. The need of subsidy for the
implementation of photovoltaic solar energy as supporting of decentralized electrical
power generation in Brazil. Renewable and Sustainable Energy Reviews. 20 (2013) 133-
41.
[136] L.-F. Chou, L.-F. Lin. Renewable Energy Feed-in-Tariff System Design and
Experience in Taiwan. Low Carbon Policy and Development in Taiwan. InTech2012.

無法下載圖示 全文公開日期 2023/06/12 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE