簡易檢索 / 詳目顯示

研究生: 林晉賢
Chin-Hsien Lin
論文名稱: 牡蠣殼粉與氫氧化鈉影響碳酸鈉激發爐石粉膠結材工程性質之研究
Study on effects of oyster shell ash and sodium hydroxide solution on the engineering properties of sodium carbonate activated-slag cementitious materials
指導教授: 張大鵬
Ta-Peng Chang
口試委員: 李有豐
孫詠明
陳泰安
盧之偉
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 172
中文關鍵詞: 煅燒牡犡殼粉碳酸鈉激發爐石鹼激發材料反應機理
外文關鍵詞: calcined oyster shell ash, sodium carbonate activated slag, alkali activated material reaction mechanism
相關次數: 點閱:194下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究探討以富氧化鈣牡蠣殼粉及氫氧化鈉溶液對改善碳酸鈉激發爐石粉膠結材漿體之凝結時間過長與低早期強度等問題之效應,分為初、中及後期等三個試驗過程。主要試驗變數為基準組(A)和兩種不同類型氧化鈣(煅燒牡蠣殼組(B)及純氧化鈣組(C)),共三組與五種不同氫氧化鈉溶液取代量(0%、10%、20%、30%、40%),性能指標包括新拌性質、硬固性質、體積穩定性試驗及微觀性質。
研究結果顯示,當基準組單純添加純氧化鈣時,可將新拌爐石粉膠結材漿體初凝時間由425分鐘縮短為55分鐘,但當添加之氧化鈣含有大量二氧化矽,則會將初凝時間由425分鐘延長為630分鐘,而單純添加氫氧化鈉,則會將初凝時間由425分鐘縮短為30分鐘。以56天齡期為準,基準組於氫氧化鈉取代量20%抗壓強度由60.51 MPa增加為68.75 MPa,單純添加煅燒牡蠣殼與純氧化鈣抗壓強度分別為67.45 MPa與53.29 MPa,而煅燒牡蠣殼組於氫氧化鈉取代量10%抗壓強度由67.45 MPa增加為68.76 MPa,若純氧化鈣與氫氧化鈉兩者合併使用時,會導致硬固漿體試體在齡期28至56天期間自行崩裂。基準組的氫氧化鈉含量取代量由0%增加為40%,乾縮棒試體收縮量由0.619減少為0.209。純氧化鈣組之乾縮試體於齡期為15天時產生膨脹現象,而煅燒牡蠣殼粉組,因內含SiO2成份則未發生膨脹現象。當氫氧化鈉取代量達30%以上時,發現新拌爐石粉膠結材漿體反應機理由碳酸鈉激發機理轉為氫氧化鈉激發機理,微觀結構分析顯示出含有無機聚合物微觀結構,並在齡期28至56天時產生嚴重白華(efflorescence)現象,若再額外添加純氧化鈣,則白華現象提前在齡期14天時發生,且使反應機理的轉換由氫氧化鈉取代量30%下降為20%,而煅燒牡蠣殼粉組,則於56天養護齡期內未產生白華現象。


This study explores the effects of calcium oxide-rich oyster shell ash and sodium hydroxide solution on improving the long setting time and low early strength of sodium carbonate activated slag materials.The test process is divided into initial stage, intermediate stage and late stage. The main test variables are the control group (A) and two different types of calcium oxide (calcined commercial oyster shell ash group (B) and calcium oxide group (C)) and five different sodium hydroxide solutions (0% ,10%, 20%, 30%, 40%), performance indicators include fresh properties, hard properties, dry shrinkage test and micro properties.
The research results show that when only calcium oxide is added to the control group, the initial setting time of sodium carbonate activated slag materials can be shortened from 425 minutes to 55 minutes. But when the added calcium oxide contains a lot of silica, initial setting time is extended from 425 minutes to 630 minutes. When only adding sodium hydroxide will shorten the initial setting time from 425 minutes to 30 minutes. Based on 56 days of curing, the compressive strength of the control group was increased from 60.51 MPa to 68.75 MPa at 20% replacement sodium hydroxide. when only adding the compressive strengths of calcined commercial oyster shell ash and calcium oxide were 67.45 MPa and 53.29 MPa, respectively. The compressive strength of the calcined commercial oyster shell ash group with 10% replacement sodium hydroxide increased from 67.45 MPa to 68.76 MPa.If calcium oxide and sodium hydroxide are mixing , it will cause the specimen disintegrate on its own during the curing of 28 to 56 day. The replacement percentage of sodium hydroxide in the control group was increased from 0% to 40%, and the shrinkage of the dry shrink rate specimen was reduced from 0.619 to 0.209.The dry-shrinked specimens of the calcium oxide group expansive at 15 days of age, while the calcined commercial oyster shell ash group didn't expansive due to the content of silicon.When the replacement percentage of sodium hydroxide reached more than 30%, it was found that the cause of sodium carbonate activation slag was changed from the sodium carbonate excitation mechanism to the sodium hydroxide excitation mechanism.Microstructure analysis shows that it contains inorganic polymer microstructure, and severe white efflorescence occurs at 28 days of age. If additional calcium oxide is added, the efflorescence phenomenon will occur ahead of time at 14 days of age, and the reaction mechanism will be changed. The conversion is reduced from 30% of sodium hydroxide replacement percentage to 20%.while calcined commercial oyster shell ash group did not produce efflorescence during curing the 56-day .

摘要 i Abstract iii 致謝 v 目錄 vi 表目錄 x 圖目錄 xii 第一章 緒論 1 1.1研究動機 1 1.2研究目的 2 1.3研究流程 2 1.4預期成果 3 第二章 文獻回顧 5 2.1前言 5 2.2 鹼激發產物之發展歷史概述 5 2.3鹼激發材料介紹 7 2.3.1 爐石 7 2.3.2 牡蠣殼 9 2.4機理介紹 12 2.4.1鹼激發材料反應機理 12 2.4.2爐石在鹼性溶液中溶解情形 14 2.4.3碳酸鈉激發爐石之反應機理 15 2.5鹼激發產物之力學性質 19 2.5.1鹼激發材料之因子探討 19 2.5.2鹼激發材料之力學性質 20 2.6 鹼激發產物之體積穩定性 21 2.6.1發生體積收縮之因素 21 2.6.2鹼激發產物之體積穩定性 22 2.6.3碳酸鈉激發爐石材料之體積穩定性 23 2.7 孔隙分析(MIP) 24 2.8 熱比重分析法(TGA) 25 2.9水化熱 26 2.10 鹼激發產物之聚合因子探討 27 2.10.1鹼性激發溶液 27 2.10.2液固比 31 2.10.3養護方式 30 2.10.4氧化鈣取代量 31 2.10.5氫氧化鈉取代量 31 第三章 研究計畫 45 3.1試驗內容與流程 45 3.2試驗材料介紹與備製 46 3.2.1 水淬高爐石 46 3.2.2煅燒牡蠣殼 46 3.2.3氧化鈣CaO 46 3.2.4碳酸鈉水溶液(1.5M) 46 3.2.5氫氧化鈉水溶液(10M) 47 3.3試驗儀器設備 47 3.4試驗變數與配比設計 50 3.4.1試驗變數與說明 50 3.4.2配比編號說明 51 3.4.3配比規劃 52 3.5拌合步驟 53 3.6試驗流程 53 3.6.1基本性質試驗 53 3.6.2新拌性質試驗 55 3.6.3力學性質試驗 56 3.6.4體積穩定性試驗 57 3.6.5微觀試驗 57 第四章 結果與討論 79 4.1 前導試驗 79 4.1.1前導凝結時間 79 4.1.2前導流度試驗 80 4.1.3早期抗壓試驗 81 4.1.4氧化鈣取代量變數固定 81 4.2 中期試驗 82 4.2.1中期抗壓試驗 82 4.2.2乾縮棒試驗 83 4.2.3液固比變數固定 84 4.3 後期試驗 85 4.3.1新拌性質 85 4.3.2 抗壓試驗 91 4.3.3乾縮棒試驗 93 4.3.4微觀性質 95 第五章 結論與建議 147 5.1結論 147 5.2建議 150 參考文獻 151

[1] Abdalqader, Ahmed, Fei Jin, and Abir Al-Tabbaa, “Performance of magnesia-modified sodium carbonate-activated slag/fly ash concrete,” Cement and Concrete Composites, vol. 103, pp. 160-174, 2019.
[2] Adewumi, Adeshina Adewale, Mohd Azreen Mohd Ariffin, Moruf Olalekan Yusuf, Mohammed Maslehuddin, and Mohammad Ismail, “Effect of sodium hydroxide concentration on strength and microstructure of alkali-activated natural pozzolan and limestone powder mortar,” Construction and Building Materials, vol. 271, pp. 121530, 2021.
[3] Akturk, Busra, and Ahmet B.Kizilkanat, “Improvement of durability and drying shrinkage of sodium carbonate activated slag through the incorporation of calcium hydroxide and sodium hydroxide,” Construction and Building Materials, vol. 243, pp. 118260, 2020.
[4] Akturk, Busra, Ahmet B.Kizilkanat, and Nihat Kabay, “Effect of calcium hydroxide on fresh state behavior of sodium carbonate activated blast furnace slag pastes,” Construction and Building Materials, vol. 212, pp. 388-399, 2019.
[5] Akturk, Busra, Sumeru Nayak, Ahmet B. Kizilkanat, and Sumanta Das, “Microstructure and Strength Development of Sodium Carbonate–Activated Blast Furnace Slags,” Journal of Materials in Civil Engineering, vol. 31, no. 11, 2019.
[6] Alarcon-Ruiz, Lucia, Gerard Platret, Etienne Massieu, and Alain Ehrlacher, “The use of thermal analysis in assessing the effect of temperature on a cement paste,” Cement and Concrete Research, vol. 35, no. 3, pp. 609-613, 2005.
[7] Alidoust, Darioush, Masayuki Kawahigashi, Shuji Yoshizawa, Hiroaki Sumida, and Makiko Watanabe, “Mechanism of cadmium biosorption from aqueous solutions using calcined oyster shells,” Journal of Environmental Management, vol. 150, pp. 103-110, 2015.
[8] Amer, Ismail, Mohamed Kohail, M.S.El-Feky, Ahmed Rashad, and Mohamed A.Khalaf, “A review on alkali-activated slag concrete,” Ain Shams Engineering Journal, vol. 12, no. 2, pp. 1475-1499, 2021.
[9] Assaedi, Hasan, Thamer Alomayri, Cyriaque Rodrigue Kaze, Bharat Bhushan Jindal, Subaer Subaer, Faiz Shaikh, and Shoroog Alraddadi, “Characterization and properties of geopolymer nanocomposites with different contents of nano-CaCO3,” Construction and Building Materials, vol. 252, pp. 119137, 2020.
[10] Atiş, Cengiz Duran, CahitBilim, ÖzlemÇelik, and OkanKarahan, “Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar,” Construction and Building Materials, vol. 23, no. 1, pp. 548-555, 2009.
[11] Bernal, Susan A., John L. Provis, Rupert J. Myers, Rackel San Nicolas, and Jannie S. J. van Deventer, “Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders,” Materials and Structures volume, vol. 48, pp. 517-529, 2014.
[12] Chithiraputhiran, Sundararaman, and Narayanan Neithalath, “Isothermal reaction kinetics and temperature dependence of alkali activation of slag, fly ash and their blends,” Construction and Building Materials, vol. 45, pp. 233-242, 2013.
[13] Collins, Frank, and Jay G. Sanjayan, “Early age strength and workability of slag pastes activated by NaOH and Na2CO3,” Cement and Concrete Research, vol. 28, no. 5, pp. 655-664, 1998.
[14] Collins, Frank, and Jay G. Sanjayan, “Effect of pore size distribution on drying shrinking of alkali-activated slag concrete,” Cement and Concrete Research, vol. 30, no. 9, pp. 1401-1406, 2000.
[15] Cosentino, Isabella, Freddy Liendo, Mara Arduino, Luciana Restuccia, Samir Bensaid, Fabio Deorsola, and Giuseppe Andrea Ferro, “Nano CaCO3 particles in cement mortars towards developing a circular economy in the cement industry,” Procedia Structural Integrity, vol. 26, pp. 155-165, 2020.
[16] Davidovits, Joseph, “GEOPOLYMERS Inorganic polymerie new materials,” Journal of Thamal Analysis, vol. 37, pp. 1633-1656, 1991.
[17] Djobo, Y. J. N., A.Elimbi, J.Dika Manga, and I.B.Djon Li Ndjock, “Partial replacement of volcanic ash by bauxite and calcined oyster shell in the synthesis of volcanic ash-based geopolymers,” Construction and Building Materials, vol. 113, pp. 673-681, 2016.
[18] Fernández-Jiménez, Ana , and Francisca Puertas, “Alkali-activated slag cements: Kinetic studies,” Cement and Concrete Research, vol. 27, no. 3, pp. 359-368, 1997.
[19] Fernández-Jiménez, Ana, J.G.Palomo, and F.Puertas, “Alkali-activated slag mortars: Mechanical strength behaviour,” Cement and Concrete Research, vol. 29, no. 8, pp. 1313-1321, 1999.
[20] Fernández-Jiménez, Ana, A. Palomo, and M. Criado, “Microstructure development of alkali-activated fly ash cement: a descriptive model,” Cement and Concrete Research, vol. 35, no. 6, pp. 1204-1209, 2005.
[21] Fernández-Jiménez, Ana, and Francisca Puertas, “Effect of activator mix on the hydration and strength behaviour of alkali-activated slag cements,” Advances in Cement Research, vol. 15, no. 3, pp. 129-136, 2003.
[22] Huanhai, Zhou, Wu Xuequan, Xu Zhongzi, and Tang Mingshu, “Kinetic study on hydration of alkali-activated slag,” Cement and Concrete Research, vol. 23, no. 6, pp. 1253-1258, 1993.
[23] Jeon, Dongho, Yubin Jun, Yeonung Jeong, and Jae Eun Oh, “Microstructural and strength improvements through the use of Na2CO3 in a cementless Ca(OH)2-activated Class F fly ash system,” Cement and Concrete Research, vol. 67, pp. 215-225, 2015.
[24] Jin, F., K. Gu, and A. Al-Tabbaa, “Strength and drying shrinkage of alkali-activated slag pastes containing reactive MgO,” Construction and Building Materials, vol. 51, pp. 395-404, 2014.
[25] Jin, Fei, and AbirAl-Tabbaa, “Strength and drying shrinkage of slag paste activated by sodium carbonate and reactive MgO,” Construction and Building Materials, 2015.
[26] Johnson, Donald R., and William A. Robb, “Gaylussite: thermal properties by simultaneous thermal analysis,” American Mineralogist, pp. 778-784, 1973.
[27] Kakali, G., S Tsivilis, E Aggeli, and M Bati, “Hydration products of C3A, C3S and Portland cement in the presence of CaCO3,” Cement and Concrete Research, vol. 30, no. 7, pp. 1073-1077, 2000.
[28] Khale, Divya, and Rubina Chaudhary, “Mechanism of geopolymerization and factors influencing its development: a review,” Journal of Materials Science volume, vol. 42, pp. 729-746, 2007.
[29] Kiiashko, Artur, Mohend Chaouche, and Laurent Frouin, “Effect of phosphonate addition on sodium carbonate activated slag properties,” Cement and Concrete Composites, vol. 119, pp. 103986, 2021.
[30] Kim, Jong-Wan, and Hae-Geon Lee, “Thermal and carbothermic decomposition of Na2CO3 and Li2CO3,” Metallurgical and Materials Transactions, vol. 32, pp. 17-24, 2001.
[31] Li, Gengying, Xiaoyang Xu, E. Chen, Jie Fan, and Guangjing Xiong, “Properties of cement-based bricks with oyster-shells ash,” Journal of Cleaner Production, vol. 91, pp. 279-287, 2015.
[32] Li, Yongde, and Sun Yao, “Preliminary study on combined-alkali–slag paste materials,” Cement and Concrete Research, vol. 30, no. 6, pp. 963-966, 2000.
[33] Liu, Xiaoyan, Lei Chen, Aihua Liu, and Xinrui Wang, “Effect of Nano-CaCO3 on Properties of Cement Paste,” Energy Procedia, vol. 16, pp. 991-996, 2012.
[34] Małolepszy, J, “The hydration and the properties of alkali activated slag cementitious materials,” Ceramika zeszyty naukowe AGH, 1989.
[35] Naqi, Ali, Salman Siddique, Hyeong-Ki Kim, and Jeong Gook Jang, “Examining the potential of calcined oyster shell waste as additive in high volume slag cement,” Construction and Building Materials, vol. 230, pp. 116973, 2020.
[36] Oelkers, Eric H., “General kinetic description of multioxide silicate mineral and glass dissolution,” Geochimica et Cosmochimica Acta, vol. 65, no. 21, pp. 3703-3719, 2001.
[37] Palmer, Sara J., H. J. Spratt, and R. L. Frost, “Thermal decomposition of hydrotalcites with variable cationic ratios,” Journal of Thermal Analysis and Calorimetry, vol. 95, pp. 123-129, 2009.
[38] Palomo, Angel, M.W. Grutzeck, and M.T. Blanco, “Alkali-activated fly ashes: A cement for the future,” Cement and Concrete Research, vol. 29, no. 8, pp. 1323-1329, 1999.
[39] Prudon, A. O., “The action of alkalies on blast furnace slags,” the Society of Chemical Industry, pp. 191-202, 1940.
[40] Sakulich, Aaron R., Edward Anderson, Caroline Schauer, and Michel W. Barsoum, “Mechanical and microstructural characterization of an alkali-activated slag/limestone fine aggregate concrete,” Construction and Building Materials, vol. 23, no. 8, pp. 2951-2957, 2009.
[41] Seo, Joon Ho, Solmoi park, Beom Joo Yang, and Jeong Gook Jang, “Calcined Oyster Shell Powder as an Expansive Additive in Cement Mortar,” MDPI, 2019.
[42] Song, S., D. Sohn, H.M. Jennings., and T.O. Mason, “ Hydration of alkali-activated ground granulated blast furnace slag,” Journal of Materials Science volume, pp. 249-257, 2000.
[43] Song, Sujin, Hamlin M, and Jennings ab, “Pore solution chemistry of alkali-activated ground granulated blast-furnace slag,” Cement and Concrete Research, vol. 29, no. 2, pp. 159-170, 1999.
[44] Sun, Zengqing, and Anya Vollpracht, “Isothermal calorimetry and in-situ XRD study of the NaOH activated fly ash, metakaolin and slag,” Cement and Concrete Research, vol. 103, pp. 110-122, 2018.
[45] Taylor, Harry FW., Cement Chemistry, 1997.
[46] V.D. Glukhovsky, G.S. Rostovskaja, G.V. Rumyna, “High strength slag-alkaline cement,” 1980.
[47] Wang, Kejin, Surendra P Shah, and Alexander Mishulovich, “ Effects of curing temperature and NaOH addition on hydration and strength development of clinker-free CKD-fly ash binders,” Cement and Concrete Research, vol. 34, no. 2, pp. 299-309, 2004.
[48] Wang, Shao-Dong, Karen L.Scrivener, and P.L.Pratt, “Factors affecting the strength of alkali-activated slag,” Cement and Concrete Research, vol. 24, no. 6, pp. 1033-1043, 1994.
[49] Yang, Beomjoo, and Jeong GookJang, “Environmentally benign production of one-part alkali-activated slag with calcined oyster shell as an activator,” Construction and Building Materials, vol. 257, pp. 119522, 2020.
[50] Yang, Eun-Ik, Myung-Yu Kim, Hae-Geun Park, and Seong-Tae Yi, “Effect of partial replacement of sand with dry oyster shell on the long-term performance of concrete,” Construction and Building Materials, vol. 24, no. 5, pp. 758-765, 2010.
[51] Yang, Eun-Ik, Seong-Tae Yi, and Young-Moon Leem, “Effect of oyster shell substituted for fine aggregate on concrete characteristics: Part I. Fundamental properties,” Cement and Concrete Research, vol. 35, no. 11, pp. 2175-2182, 2005.
[52] Yao, Xiao, Zuhua Zhang, Huajun Zhu, and Yue Chen, “Geopolymerization process of alkali–metakaolinite characterized by isothermal calorimetry,” Thermochimica Acta, vol. 493, no. 1-2, pp. 49-54, 2009.
[53] Ye, Hailong, and Aleksandra Radlińska, “Shrinkage mechanisms of alkali-activated slag,” Cement and Concrete Research, vol. 88, pp. 126-135, 2016.
[54] Yoshioka, Sayoko, and Yasushi Kitano, “Transformation of aragonite to calcite through heating,” Geochemical Journal, vol. 19, no. 4, pp. 245-249, 1985.
[55] Yuan, B., Q.L.Yu, and H.J.H.Brouwers, “Time-dependent characterization of Na2CO3 activated slag,” Cement and Concrete Composites, vol. 84, pp. 188-197, 2017.
[56] Yuan, B., and Q.L.Yu and H.J.H.Brouwers, “Reaction kinetics, reaction products and compressive strength of ternary activators activated slag designed by Taguchi method,” Materials & Design, vol. 86, no. 878-886, 2015.
[57] Zhang, Junjie, Hongbo Tan, Lixiong Cai, Xingyang He, Wen Yang, and Xiaohai Liu, “Ultra-fine slag activated by sodium carbonate at ambient temperature ” Construction and Building Materials, vol. 264, pp. 120695, 2020.
[58] Zhong, Bin-Yang, Chang-Feng Chan, Zhou Qiang, and Yu Yan, “Structure and Property Characterization of Oyster Shell Cementing Material,” JIEGOU HUAXUE, vol. 31, pp. 85-92, 2012.
[59] Zuo, Yibing, and Guang Ye, “GeoMicro3D: A novel numerical model for simulating the reaction process and microstructure formation of alkali-activated slag,” vol. 141, pp. 106328, 2021.
[60] 孫家瑛,渚培南與吳初航,礦渣在鹼性溶液激發下的機理,2012.
[61] 黃然,紀茂傑,林世堂與謝紹恒,混凝土收縮開裂機理及防制技術之研究,2014.
[62] 鄭大偉,無機聚合技術的發展應用及回顧,2010.

無法下載圖示 全文公開日期 2027/01/17 (校內網路)
全文公開日期 2027/01/17 (校外網路)
全文公開日期 2027/01/17 (國家圖書館:臺灣博碩士論文系統)
QR CODE