簡易檢索 / 詳目顯示

研究生: 鄭侑軒
Yu-Hsuan
論文名稱: 奈米摩擦發電元件應用於自供電甲醛感測
Self-Powered Formaldehyde Sensor based on Triboelectric Nanogenerator
指導教授: 張志宇
Chih-Yu Chang
口試委員: 林宗宏
Zong-Hong Lin
吳昌謀
Chang-Mou Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 72
中文關鍵詞: 奈米摩擦發電機自供電甲醛感測裝置介面修飾層磷鉬酸
外文關鍵詞: triboelectric nanogenerator, self-powered formaldehyde sensor, surface modification, phosphomolybdic acid
相關次數: 點閱:267下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


致謝 摘要 Abstract 目錄 符號目錄 圖目錄 表目錄 第一章 緒論 1.1前言 1.2研究動機與目的 第二章 文獻回顧 2.1奈米摩擦發電機發展歷史 2.1.1奈米摩擦發電機材料選擇 2.1.2接觸分離式奈米摩擦發電機工作機制 2.1.3奈米摩擦發電機公式 2.2表面修飾工程 2.3奈米摩擦發電機應用層面 2.4氣體感測裝置 2.4.1奈米摩擦發電機作為氣體感測裝置的電力來源 2.4.2自供電奈米摩擦發電機氣體感測裝置 第三章 實驗步驟與分析 3.1實驗設計 3.2元件製備 3.2.1材料購買 3.2.2基板清洗流程 3.2.3製備cPMA粉末 3.2.4介電層製備流程 3.2.5Ag NPs溶液製備 3.2.6PTZ修飾Ag NPs電極製備 3.3甲醛感測濃度計算 3.4甲醛感測方式 3.5凱爾文探針力顯微鏡計算功函數原理 3.6奈米摩擦發電機相關分析及量測 第四章 結果與討論 4.1PDMS介電層表面修飾工程 4.1.1cPMA結構鑑定及材料特性分析 4.1.2cPMA修飾PDMS介電層表面分析 4.1.3cPMA修飾PDMS介電層元件電性輸出結果 4.2Ag NPs電極表面修飾工程 4.2.1PTZ修飾Ag NPs電極相關分析 4.2.2PTZ修飾Ag NPs電極表面分析 4.2.3PTZ修飾Ag NPs電極元件電性輸出結果 4.3PTZ修飾Ag NPs及cPMA修飾PDMS元件性能、穩定度及應用 4.4奈米摩擦發電機應用於自供電甲醛感測裝置 第五章 結論 參考文獻

參考文獻
1. J. L. Espinoza and L. T. Dong, J. Clin. Med., 2020, 9, 3860.
2. D. Lardinois, W. Weder, T. F. Hany, E. M. Kamel, S. Korom, B. Seifert, G. K. von Schulthess and H. C. Steinert, N. Engl. J. Med., 2003, 348, 2500-2507.
3. L.-M. Wu, J.-R. Xu, H.-Y. Gu, J. Hua, J. Chen, W. Zhang, E. M. Haacke and J. Hu, J. Surg. Res., 2012, 178, 304-314.
4. M. P. Fernandes, S. Venkatesh and B. G. Sudarshan, Open Biomed. Eng. J., 2015, 9, 228-233.
5. J. Pereira, P. Porto-Figueira, C. Cavaco, K. Taunk, S. Rapole, R. Dhakne, H. Nagarajaram and J. S. Câmara, Metabolites, 2015, 5, 3-55.
6. T. H. Risby and S. F. Solga, Appl. Phys. B, 2006, 85, 421-426.
7. P. Fuchs, C. Loeseken, J. K. Schubert and W. Miekisch, Int. J. Cancer, 2010, 126, 2663-2670.
8. A. Wehinger, A. Schmid, S. Mechtcheriakov, M. Ledochowski, C. Grabmer, G. A. Gastl and A. Amann, Int. J. Mass Spectrom., 2007, 265, 49-59.
9. C. Wang and P. Sahay, Sensors, 2009, 9, 8230-8262.
10. P.-R. Chung, C.-T. Tzeng, M.-T. Ke and C.-Y. Lee, Sensors (Basel), 2013, 13, 4468-4484.
11. S. C. Mukhopadhyay, IEEE Sens. J., 2015, 15, 1321-1330.
12. K. Guk, G. Han, J. Lim, K. Jeong, T. Kang, E.-K. Lim and J. Jung, Nanomaterials, 2019, 9, 813.
13. J. Min, J. R. Sempionatto, H. Teymourian, J. Wang and W. Gao, Biosens. Bioelectron., 2021, 172, 112750.
14. Z. Han, Y. Qi, Z. Yang, H. Han, Y. Jiang, W. Du, X. Zhang, J. Zhang, Z. Dai, L. Wu, C. Fletcher, Z. Wang, J. Liu, G. Lu and F. Wang, J. Mater. Chem. C, 2020, 8, 13169-13188.
15. F.-R. Fan, Z.-Q. Tian and Z. Lin Wang, Nano Energy, 2012, 1, 328-334.
16. D. W. Kim, J. H. Lee, J. K. Kim and U. Jeong, NPG Asia Mater., 2020, 12, 6.
17. Q. Shi, T. He and C. Lee, Nano Energy, 2019, 57, 851-871.
18. C. Huang, G. Chen, A. Nashalian and J. Chen, Nanoscale, 2021, 13, 2065-2081.
19. Z. Wen, Q. Shen and X. Sun, Nanomicro Lett, 2017, 9, 45.
20. J. Zhu, M. Zhu, Q. Shi, F. Wen, L. Liu, B. Dong, A. Haroun, Y. Yang, P. Vachon, X. Guo, T. He and C. Lee, EcoMat, 2020, 2, e12058.
21. T. Eamsa-ard, T. Seesaard, T. Kitiyakara and T. Kerdcharoen, 2016.
22. J. Tian, X. Chen and Z. L. Wang, Nanotechnology, 2020, 31, 242001.
23. C. Wu, A. C. Wang, W. Ding, H. Guo and Z. L. Wang, Adv. Energy Mater., 2019, 9, 1802906.
24. Y. Zhou, W. Deng, J. Xu and J. Chen, Cell Reports Physical Science, 2020, 1, 100142.
25. J. Xu, Y. Zou, A. Nashalian and J. Chen, Front. Chem., 2020, 8.
55
26. Y.-H. Cheng, C.-J. Lee and C.-Y. Chang, Adv. Mater. Technol., 2021, 6, 2000985.
27. J.-R. Yang, C.-J. Lee and C.-Y. Chang, J. Mater. Chem. A, 2021, 9, 4230-4239.
28. X. Xia, Q. Liu, Y. Zhu and Y. Zi, EcoMat, 2020, 2, e12049.
29. Z. Wu, T. Cheng and Z. L. Wang, Sensors, 2020, 20, 2925.
30. J. Yi, K. Dong, S. Shen, Y. Jiang, X. Peng, C. Ye and Z. L. Wang, Nanomicro Lett, 2021, 13, 103.
31. Q. Zhou, J. Pan, S. Deng, F. Xia and T. Kim, Adv. Mater., n/a, 2008276.
32. J. W. Lee, S. Jung, T. W. Lee, J. Jo, H. Y. Chae, K. Choi, J. J. Kim, J. H. Lee, C. Yang and J. M. Baik, Adv. Energy Mater., 2019, 9, 1901987.
33. Q. Shen, X. Xie, M. Peng, N. Sun, H. Shao, H. Zheng, Z. Wen and X. Sun, Adv. Funct. Mater., 2018, 28, 1703420.
34. J. Meng, H. Li, L. Zhao, J. Lu, C. Pan, Y. Zhang and Z. Li, Nano Lett., 2020, 20, 4968-4974.
35. D. Wang, D. Zhang, Y. Yang, Q. Mi, J. Zhang and L. Yu, ACS Nano, 2021, 15, 2911-2919.
36. Y. Yang, D. Zhang, D. Wang, Z. Xu and J. Zhang, J. Mater. Chem. A, 2021, 9, 14495-14506.
37. D. Gu, X. Li, H. Wang, M. Li, Y. Xi, Y. Chen, J. Wang, M. N. Rumyntseva and A. M. Gaskov, Sens. Actuators B Chem., 2018, 256, 992-1000.
38. Y. Su, G. Xie, H. Tai, S. Li, B. Yang, S. Wang, Q. Zhang, H. Du, H. Zhang, X. Du and Y. Jiang, Nano Energy, 2018, 47, 316-324.
39. J. Chang, X. Zhang, Z. Wang, C. Li, Q. Hu, J. Gao and L. Feng, ACS Appl. Nano Mater., 2021, 4, 5263-5272.
40. S. Wang, B. Liu, Z. Duan, Q. Zhao, Y. Zhang, G. Xie, Y. Jiang, S. Li and H. Tai, Sens. Actuators B Chem., 2021, 327, 128923.
41. J. H. Kim, J. Chun, J. W. Kim, W. J. Choi and J. M. Baik, Adv. Funct. Mater., 2015, 25, 7049-7055.
42. A. I. Uddin and G.-S. Chung, Sens. Actuators B Chem., 2016, 231, 601-608.
43. X. Xue, Y. Fu, Q. Wang, L. Xing and Y. Zhang, Adv. Funct. Mater., 2016, 26, 3128-3138.
44. A. I. Uddin, U. Yaqoob and G.-S. Chung, ACS Appl. Mater. Interfaces, 2016, 8, 30079-30089.
45. S.-H. Shin, Y. H. Kwon, Y.-H. Kim, J.-Y. Jung and J. Nah, Nanomaterials, 2016, 6, 186.
46. A. I. Uddin and G.-S. Chung, RSC Adv., 2016, 6, 63030-63036.
47. S. Cui, Y. Zheng, T. Zhang, D. Wang, F. Zhou and W. Liu, Nano Energy, 2018, 49, 31-39.
48. T. He, Q. Shi, H. Wang, F. Wen, T. Chen, J. Ouyang and C. Lee, Nano Energy, 2019, 57, 338-352.
49. A. S. M. I. Uddin and G.-S. Chung, Sens. Actuators B Chem., 2017, 245, 1-10.
50. J. Chang, H. Meng, C. Li, J. Gao, S. Chen, Q. Hu, H. Li and L. Feng, Adv. Mater.
56
Technol., 2020, 5, 1901087.
51. H. Zhang, Y. Yang, Y. Su, J. Chen, C. Hu, Z. Wu, Y. Liu, C. Ping Wong, Y. Bando and Z. L. Wang, Nano Energy, 2013, 2, 693-701.
52. S. Wang, H. Tai, B. Liu, Z. Duan, Z. Yuan, H. Pan, Y. Su, G. Xie, X. Du and Y. Jiang, Nano Energy, 2019, 58, 312-321.
53. H. Wang, H. Wu, D. Hasan, T. He, Q. Shi and C. Lee, ACS Nano, 2017, 11, 10337-10346.
54. C. Cai, J. Mo, Y. Lu, N. Zhang, Z. Wu, S. Wang and S. Nie, Nano Energy, 2021, 83, 105833.
55. S. Wang, Y. Jiang, H. Tai, B. Liu, Z. Duan, Z. Yuan, H. Pan, G. Xie, X. Du and Y. Su, Nano Energy, 2019, 63, 103829.
56. B. Liu, S. Wang, Z. Yuan, Z. Duan, Q. Zhao, Y. Zhang, Y. Su, Y. Jiang, G. Xie and H. Tai, Nano Energy, 2020, 78, 105256.
57. W. Melitz, J. Shen, A. C. Kummel and S. Lee, Surface Science Reports, 2011, 66, 1-27.
58. R. Bozek, ACTA PHYSICA POLONICA SERIES A, 2005, 108, 541.
59. T. P. Gerasimova and S. A. Katsyuba, Dalton Trans., 2013, 42, 1787-1797.
60. C.-M. Wang, C.-H. Liao, H.-M. Kao and K.-H. Lii, Inorg. Chem., 2005, 44, 6294-6298.
61. J. Javidi, M. Esmaeilpour, Z. Rahiminezhad and F. N. Dodeji, J. Clust. Sci., 2014, 25, 1511-1524.
62. J. Liu, J. Wang, M. Chen and D.-J. Qian, J. Nanopart. Res., 2017, 19, 264.
63. A. Farhadipour, M. H. Alizadeh and H. Eshghi, Inorg. Chem. Commun., 2014, 41, 37-42.
64. Y.-B. Liu, Y. Wang, L.-N. Xiao, Y.-Y. Hu, L.-M. Wang, X.-B. Cui and J.-Q. Xu, J. Coord. Chem., 2012, 65, 4342-4352.
65. Y.-Y. Zhang, M. Hu, Z. Shao, C. Huang, Q. Qin and L. Mi, CrystEngComm, 2021, DOI: 10.1039/D1CE00332A.
66. G. Zhang, T. He, Y. Ma, Z. Chen, W. Yang and J. Yao, Phys. Chem. Chem. Phys., 2003, 5, 2751-2753.
67. Q. Zeng, S. Guo, Y. Sun, Z. Li and W. Feng, Nanomaterials, 2020, 10, 1839.
68. Y.-X. Diao, M.-J. Han, L.-J. Wan, K. Itaya, T. Uchida, H. Miyake, A. Yamakata and M. Osawa, Langmuir, 2006, 22, 3640-3646.
69. W.-R. Zhuang, Y. Wang, P.-F. Cui, L. Xing, J. Lee, D. Kim, H.-L. Jiang and Y.-K. Oh, J. Control. Release, 2019, 294, 311-326.
70. V. F. Traven, D. A. Cheptsov, J. I. Svetlova, I. V. Ivanov, C. Cuerva, C. Lodeiro, F. Duarte, S. F. Dunaev and V. V. Chernyshev, Dyes Pigment., 2021, 186, 108942.
71. A. K. Iyer and S. C. Peter, Inorg. Chem., 2014, 53, 653-660.
72. P. Singh, K. Kumari and R. Patel, J. Pharm. Appl. Chem., 2016, 3, 53-56.
73. M. Almohalla, I. Rodríguez-Ramos and A. Guerrero-Ruiz, Catal. Sci. Technol., 2017, 7, 1892-1901.
57
74. V. Fallah Hamidabadi, C. Momblona, D. Pérez-Del-Rey, A. Bahari, M. Sessolo and H. J. Bolink, Dalton Trans., 2019, 48, 30-34.
75. L. Liu, R. Dong, D. Ye, Y. Lu, P. Xia, L. Deng, Y. Duan, K. Cao and S. Chen, ACS Appl. Mater. Interfaces, 2021, 13, 12268-12277.
76. I.-M. Chan, W.-C. Cheng and F. C. Hong, Appl. Phys. Lett., 2002, 80, 13-15.
77. W.-d. Yang, C.-y. Liu, Z.-y. Zhang, Y. Liu and S.-d. Nie, J. Mater. Chem., 2012, 22, 23012-23016.
78. K.-J. Baeg and J. Lee, Adv. Mater. Technol., 2020, 5, 2000071.
79. V. Kumar, N. Upadhyay and A. Manhas, J. Mol. Struct., 2015, 1099, 135-141.
80. Y. Wu, Y. Li and B. S. Ong, J. Am. Chem. Soc., 2007, 129, 1862-1863.
81. J.-T. Wu, S. L.-C. Hsu, M.-H. Tsai and W.-S. Hwang, Thin Solid Films, 2009, 517, 5913-5917.
82. Z. Bin, G. Dong, P. Wei, Z. Liu, D. Zhang, R. Su, Y. Qiu and L. Duan, Nat. Commun., 2019, 10, 866.
83. J. Zou, C.-Z. Li, C.-Y. Chang, H.-L. Yip and A. K.-Y. Jen, Adv. Mater., 2014, 26, 3618-3623.
84. R. Eastment and C. Mee, Journal of Physics F: Metal Physics, 1973, 3, 1738.
85. H. Kang, S. Hong, J. Lee and K. Lee, Adv. Mater., 2012, 24, 3005-3009.
86. O. A. Kholdeeva, M. N. Timofeeva, G. M. Maksimov, R. I. Maksimovskaya, W. A. Neiwert and C. L. Hill, Inorg. Chem., 2005, 44, 666-672.
87. P. Putaj, Université Claude Bernard-Lyon I, 2012.

無法下載圖示 全文公開日期 2026/09/17 (校內網路)
全文公開日期 2026/09/17 (校外網路)
全文公開日期 2026/09/17 (國家圖書館:臺灣博碩士論文系統)
QR CODE