研究生: |
趙佳宏 Chia-Hung Chao |
---|---|
論文名稱: |
5.8 GHz非接觸式生理訊號感測雷達模組研製 Development of 5.8 GHz Radar Modules for Vital-Sign Detection |
指導教授: |
曾昭雄
Chao-Hsiung Tseng |
口試委員: |
張嘉展
Chia-Chan Chang 瞿大雄 Tah-Hsiung Chu 陳筱青 Hsiao-Chin Chen |
學位類別: |
碩士 Master |
系所名稱: |
電資學院 - 電子工程系 Department of Electronic and Computer Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 73 |
中文關鍵詞: | 都卜勒雷達系統 、非接觸式 、波束掃描天線 、生理訊號感測 |
外文關鍵詞: | Doppler radar system, Non-contact, Beam-scanning antenna, vital-sign detection |
相關次數: | 點閱:604 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要係研製一型應用於人體吸呼及心跳量測之非接觸式生理訊號感測雷達模組,其中包含雷達收發模組、射頻被動電路、基頻電路及不同極化之天線陣列。為克服雷達感測系統量測零點問題,本論文係採用直接正交轉換電路架構實現雷達感測模組。此雷達感測系統之操作頻率為5.8 GHz,由市售積體電路及射頻被動電路實現,且以接地式共平面波導連結所有射頻元件。雷達感測模組所量測之每分鐘心跳次數與市售醫療級血氧濃度計比較,其誤差為每分鐘3次內,亦即誤差百分比為4.6 %內。此外,使用圓極化天線陣列作為雷達感測系統之收發天線,較使用線性極化天線陣列,可獲得較佳之系統可量測距離。本論文所研製之雷達模組使用圓極化天線陣列時,呼吸訊號之可量測距離為180 cm,心跳之可量測距離為60 cm。最後,本論文將雷達感測模組之收發天線變更為以複合式左/右傳輸線所設計之洩漏波天線以達到空間掃描功能。隨系統訊號源頻率由5.1 GHz改變至6.5 GHz時,天線擁有59°之空間掃描能力。當兩位受測者同時靜坐於雷達感測模組前方0°及26°方向時,可分別感測出受測者的呼吸及心跳頻率。
This thesis presents a non-contact vital-sign sensor radar for human’s respiration and heartbeat detection. The developed sensing radar system includes a radar transceiver module, radio-frequency (RF) passives, base band circuits, and linearly and circularly polarized antenna arrays. In order to overcome the null point effect, the quadrature direct conversion configuration is adopted to implement this radar module. The radar module is designed at 5.8 GHz, and implemented by commercial integrated circuits and grounded coplanar waveguide (GCPW) passive components. As compared with a medical finger pulse oximeter, the measured error of the heartbeat rate of the developed sensor radar is controlled under 3 time per minute, namely a relative error of 4.6 %. Moreover, using circularly polarized antenna arrays as transmitting and receiving antennas has a better measurement range capability than that of using the linearly polarized antennas The developed radar module adopts the circularly polarized antenna arrays, the measurement range capability of the heartbeat and respiration are 60 cm and 180 cm, respectively. Finally, the composite right/left-handed transmission line is adopted to developed a leaky-wave antenna to achieve the capability of space scanning, and employed in the developed radar module. When the frequency of the radar source varys from 5.1 to 6.5 GHz, the system can provide a 59° spatial scanning. When two human targets sit in front of the radar module at the azimuth angles of 0 ° and 26 °, the system can easily detect both respiration and heartbeat.
[1] Sudden unexpected infant death and sudden infant death syndrome
Available:http://www.cdc.gov/sids/aboutsuidandsids.htm
[2] Available:http://www.mchlibrary.info//suid-sids/Statistics/table1.html
[3] J. A. Taylor, M. Sanderson, “A reexamination of the risk factors for the sudden infant death syndrome,” J Pediatr, 126, pp. 887-891, Jun. 1995.
[4] R. K. Scragg , E. A. Mitchell., “Side sleeping position and bed sharing in the sudden infant death syndrome,” Ann Med, 30, pp.345-349, 1998.
[5] J. A. Taylor, J. W. Krieger, D. T. Reay, R. L. Davis and R. Haruff , L. K. Cheney., “Prone sleep position and the sudden infant death syndrome in King County, Washington: a case-control study,” J Pediatr, 128, pp. 626-630, 1996.
[6] Available:http://www.mohw.gov.tw/cht/DOS/Statistic.aspx?f_list_no=312&fod_list_no=2747
[7] Angelcare Monitor AC1100,http://www.monitoryourbaby.com/
p35-Angelcare-Monitor-AC1100.html
[8] A. Droitcour, V. Lubecke, J. Lin, and O. Boric-Lubecke, “A microwave radio for Doppler radar sensing of vital signs,” IEEE MTT-S Int. Microwave Symp. Dig., vol. 1, pp. 175-178, May 2001.
[9] K. M. Chen, Y. Huang, J. Shang, and A. Norman, “Microwave life-detection systems for searching human subjects under earthquake rubble or behind barrier,” IEEE Trans. Biomed. Eng., vol. 27, pp. 105–114, Jan. 2000.
[10] J. C. Lin, “ Noninvasive microwave measurement of respiration,” Proc. IEEE., pp. 1530, Oct. 1975.
[11] A. D. Droitcour, O. Boric-Lubecke, V. Lubecke and J. Lin, “0.25um CMOS and BiCMOS single chip direct conversion Doppler radars for remote sensing of vital signs,” IEEE J. Solid-State Circuits, pp. 348-349, 2002.
[12] D. Droitcour, O. Boric-Lubecke, V. M. Lubecke, J. Lin, and G. T. A. Kovac, “Range correlation and I/Q performance benefits in single-chip silicon Doppler radars for noncontact cardiopulmonary monitoring,” IEEE Trans. Microw. Theory Tech, vol. 52, pp. 838-848, Mar. 2004.
[13] Y. Xiao, J. Lin, O. Boric-Lubecke, and M. Lubecke, “Frequency-tuning technique for remote detection of heartbeat and respiration using low-power double-sideband transmission in the ka-band,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 5, pp. 2023–2032, May 2006.
[14] I. Mostafanezhad, O. Boric-Lubecke, and V. Lubecke, “A coherent low IF receiver architecture for Doppler radar motion detector used in life signs monitoring,” IEEE Radio Wireless Symp., pp. 571–574, 2010.
[15] F. K. Wang et al., “An injection-locked detector for concurrent spectrum and vital sign sensing,” IEEE MTT-S Int. Microw. Symp. Dig., pp. 768–771, 2010.
[16] V. C. Chen, The micro-Doppler effect in radar. Artceh House, Norwood, MA, 2011.
[17] C. Li, V. M. Lubecke, O. Boric-Lubecke, J. Lin, “A review on recent advances in doppler radar sensors for noncontact healthcare monitoring,” IEEE Trans. Microw. Theory Tech., vol. 61, pp. 2046-2060, 2013.
[18] D. M. Pozar, Microwave engineering, 3rd ed. New York: John Wiley & Sons, 2005.
[19] Hittite, GaAs MMIC Voltage Control Oscillator HMC431lp4 Data Sheet, Hittite Microwave Corporation., Chelmsford, MA, USA,1985 [online] Available : https://www.hittite.com/content/documents/data_sheet/hmc431lp4.pdf
[20] Hittite, GaAs MMIC Low Noise Amplifier HMC320MS8G Data Sheet, Hittite Microwave Corporation., Chelmsford, MA, USA,1985 [online] Available:
https://www.hittite.com/content/documents/data_sheet/hmc320ms8g.pdf
[21] Hittite, GaAs MMIC Mixer Integrated LO Amplifier HMC488MS8G Data Sheet, Hittite Microwave Corporation., Chelmsford, MA, USA,1985 [online] Available:
http://www.hittite.com/content/documents/data_sheet/hmc488ms8g.pdf
[22] RFMD, Cascadable Broadband GaAs MMIC Amplifier NBB-400 Data Sheet, RF Micro Devices Inc., Greensboro, NC, USA, 1992 [online] Available:
http://www.rfmd.com/store/downloads/dl/file/id/29224/nbb_400_data_sheet.pdf
[23] Texas Instruments, Dual Operational Amplifiers LM358 Data Sheet,
Texas Instruments Inc., Texas, USA [online] Available:
http://www.ti.com/lit/ds/symlink/lm358.pdf.
[24] C. A. Balanis, Antenna Theory Analysis and Design, 3rd ed., New York: John Wiley & Sons, pp. 859-864, 2005.
[25] Texas Instruments, Low Dropout Regulator LM1117 Data Sheet,
Texas Instruments Inc., Texas, USA [online] Available:
http://www.ti.com/lit/ds/symlink/lm1117-n.pdf
[26] A. Chen, Y. Zhang, Z. Chen, and S. Cao, “A Ka-band high-gain circularly polarized microstrip antenna array,” IEEE Antennas Wireless Propag. Lett., vol. 9, pp. 1115–1118, 2010.
[27] Lai, C. Caloz, and T. Itoh, “Composite right/left-handed transmission line
metamaterials, ” IEEE Microw. Mag., vol. 5, no.3, pp. 34–50, Sep. 2004.
[28] S. Mahmoud, S. K. Podilchak, Y. M. M. Antar, and A. Freundorfer., “ Perturbation analysis of a planar periodic leaky wave antenna fed by surface waves,” IEEE Antennas Wireless Propag. Lett, 174-178, 2011.
[29] Kang, M., C. Caloz, and T. Itoh, “Miniaturized MIM CRLH transmission line structure and application to backfire-to-endfire leaky wave antenna,” IEEE AP-S International Symposium, vol. 1, 827–830, 2004.
[30] C. Caloz, A. Sanada, and T. Itoh, “A novel composite right/left-handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth,” IEEE Trans. Microw. Theory Tech., vol. 52, pp. 980–992, Mar. 2004.