簡易檢索 / 詳目顯示

研究生: 鄭順汝
Shun-Ju Cheng
論文名稱: 利用聚苯乙烯微米球放大微流體繞射晶片在偵測困難梭菌雙毒素訊號與臨床上之應用
Signal amplification of Clostridium difficile toxin A and toxin B using polystyrene microsphere on microfluidic diffraction chip for clinical detection
指導教授: 陳建光
Jem-Kun Chen
口試委員: 陳建光
張棋榕
黃智峰
周百謙
鄭智嘉
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 124
中文關鍵詞: 微流體聚苯乙烯球困難梭菌毒素三明治結構雷射繞射檢測法
外文關鍵詞: Microfluidics, polystyrene spheres, Clostridium difficile toxins, sandwich structures, laser diffraction detection
相關次數: 點閱:777下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是針對困難梭菌產生的雙毒素進行定量檢測。困難梭菌透過口腔進入人體釋放出腸毒素(Toxin A)及細胞毒素(Toxin B),導致患者腸道黏膜引發炎症反應,甚至造成腹膜炎而死亡。由於艱難梭菌具有傳染之風險,且複發率和死亡率高,故檢測毒素有利於及時採取隔離措施和後續追蹤,但困難梭菌為多株菌體,可能同時含有兩種毒素,或是只有一種,甚至沒毒素,易造成偽陰性結果,因此同時檢測雙毒素是非常關鍵的指標。
    本實驗先以微影製程製作矽晶片繞射模具,透過奈米壓印取得PET繞射薄膜,其表面有解析度500奈米之一維線型及二維柱型奈米陣列圖案,可使雷射光產生不同型態的繞射。在此結構修飾(3-氨基丙基)三乙氧基矽烷(APTES)單分子自組裝及EDC/NHS活化劑耦合反應,成功接枝上蛋白質G(Protein G),利用生物親合法接枝Toxin A單株抗體(Toxin A mAb)與Toxin B單株抗體(Toxin B mAb),後續以PET - Toxin A mAb、PET - Toxin B mAb表示改質完的PET,接著進行Toxin A、Toxin B抗原抓取。但當毒素抗原結合於基材上,因毒素尺寸較小,對微結構的影響有限,無法對雷射繞射強度產生高靈敏性而限制了偵測的效能,故採用抗體-抗原-抗體(聚苯乙烯球)三明治結構,用2μm聚苯乙烯微米球為基材,改質上 Protein G 、Toxin A、Toxin B多株抗體 (Toxin A pAbs、Toxin B pAbs)及牛血清白蛋白(BSA),後續以PS@pAb表示改質完成的聚苯乙烯微米球。PS@ pAb與被晶片抓取之抗原做結合,達到破壞規則圖案,進而放大雷射繞射強度變化量。
    探討不同奈米尺寸高度基材mAb-L250、mAb -L500、mAb -L750、mAb -L1000、mAb -L1250、mAb -L1500、mAb -P250、mAb -P500、mAb -P750、mAb -P1000、mAb -P1250、mAb -P1500 (L表示線型,P表示柱型,後面數字代表高度nm尺寸),捕捉100pg/m、10ng/ml Toxin A抗原後,再流入PS@pAbA,比較繞射基材在未捕捉Toxin A、捕捉Toxin A與PS@pAbA流入後之雷射損失能量百分比,最後選定mAb-L750為雷射損失百分比最大的尺寸進行後續實驗。
    接著對0 pg/ml, 25 pg/ml, 50 pg/ml, 100 pg/ml, 500 pg/ml, 1 ng/ml, 10 ng/ml Toxin A、Toxin B抗原濃度做靈敏度測試,毒素抗原溶液透過注射幫浦以流速1.5 ml/ hr流入微流體繞射晶片,之後以PBST溶液流速6 ml/ hr進行清洗,再流入PSPS@pAbA、PS@pAbB固定流速為3ml/ hr,並以流速6 ml/ hr PBST溶液清洗,最後計算mAb-750和PS@pAbA與PS@pAbB結合L750- mAb上的toxin A、toxin B抗原後的雷射損失能量百分比,並將雷射損失能量百分比與抗原濃度的對數做線性回歸訂定出雙毒素之檢量線,結果顯示toxin A相關係數值為0.964;toxin B為0.983,皆為高度正相關,依截斷值判斷雙毒素之偵測極限濃度約為50 pg/ml,優於現行醫院採用酵素免疫分析法的偵測毒素極限濃度500pg/ml,並期望往後可以應用在困難梭菌感染之臨床應用。


    This work is focused on the quantitative determination of Toxin A and Toxin B that generated by Clostridium difficile. Clostridium difficile always infects the human body through gastrointestinal tract to release two toxins including Toxin A and Toxin B, leading to inflammation of the intestinal mucosa in patients, and in severe cases. In that case, patients may result peritonitis, even death without early stage diagnosis. Because of contagious of Clostridium difficile, high recurrence and mortality rates, toxin detection is essential for early stage diagnosis and follow-up monitoring. However, Clostridium difficile is a polymorphic bacterium that simultaneously generates both toxins. Therefore, detection of these two kinds of toxins with high sensitivity and selectivity at early stage is a crucial.
    In this work, silicon chip diffraction molds were initially fabricated using photolithography. Sequentially, PET diffraction films were obtained through nanoimprint, featuring one-dimensional and two-dimensional periodic relief grating with a resolution of 500 nm. The heights of these patterns are varied to investigate their intensity, denoted as L250、L500、L750、L1000、L1250、L1500、P250、P500、P750、P1000、P1250、P1500 (Item L and P represent line and pillar structure, the later number represents the height. )The surfaces of these chips were modified with APTES and Protein G through EDC/NHS activation coupling reaction. The Toxin A monoclonal antibodies (Toxin A mAb) and Toxin B monoclonal antibodies (Toxin B mAb) could be immobilized on the chips, denoted as ab-L250、ab-L500、ab-L750、ab-L1000、ab-L1250、ab-L1500、ab-P250、ab-P500、ab-P750、ab-P1000、ab-P1250、ab-P1500, respectively, to perform the detection of Toxin A and Toxin B antigens. However, when toxin antigens bound to the substrate, their smaller size limited their impact on the nanostructures, resulted the low sensitivity in laser diffraction intensity and thus restricting the detection efficiency. Therefore, a sandwich structure of antibody-antigen-antibody (polystyrene spheres) was employed to amplify the loss of diffraction intensity. 2 μm-polystyrene microspheres employed as the amplifier that modified with Protein G, polyclonal antibodies (Toxin A pAbs, Toxin B pAbs), and bovine serum albumin (BSA), reduced the non-specific binding, denote as PS@pAbA and PS@pAbB. Both PS@Abs were then bound to the captured antigens on the chip, disrupting the regular patterns and thereby amplifying the change in laser diffraction intensity.
    The mAb-L250、mAb -L500、mAb -L750、mAb -L1000、mAb -L1250、mAb -L1500、mAb -P250、mAb -P500、mAb -P750、mAb -P1000、mAb -P1250、mAb -P1500 were used to investigate the impact of different nano-sized substrates on laser loss energy percentages at 100 pg/ml and 10 ng/ml of Toxin A antigen. Sequentially, PS@pAbA were introduced through the chip for amplification. The ab-L750 exhibited the highest laser energy loss percentage, selected for further experiments. Sensitivity were conducted for toxin A and toxin B antigen concentrations of 0 pg/ml, 25 pg/ml, 50 pg/ml, 100 pg/ml, 500 pg/ml, 1 ng/ml, and 10 ng/ml. Toxin antigen solutions were delivered into the microfluidic diffraction chip at a flow rate of 1.5 ml/hr using an injection pump. Subsequently, the PS@pAbA and PS@pAbB solutions were introduced at a fixed flow rate of 3 ml/hr. Laser energy loss percentages were plotted against logarithms of antigen concentrations to establish the calibration curves for both toxins. The results revealed a correlation coefficient of 0.964 for toxin A and 0.983 for toxin B, indicating a highly positive correlation. Based on the cutoff values, the limit of detections (LOD) for both toxins were approximately 50 pg/ml. This LOD of this methodology surpasses 10 times of the sensitivity of ELISA (500 pg/ml) for toxin concentration. This methodology provides a rapid and low cost of determination of toxins in practice, which can diagnose Clostridium difficile infections at early stage.

    目錄 第 一 章 一、研究背景 二、研究動機與目的 第 二 章 理論基礎 一、腸毒素(Toxin A)及細胞毒素(Toxin B) 二、光柵效應 三、微影及蝕刻製程2 四、奈米壓印(NIL) 五、雷射系統檢測 六、自組裝單分子層 七、EDC/NHS coupling reaction 八、重組蛋白與抗體 九、聚苯乙烯粒子生物技術應用 十、三明治免疫分析法(ELISA) 第 三 章 儀器介紹 一、高解析度場發射掃描式電子顯微鏡 二、原子力顯微鏡 三、X射線光電子能譜儀 四、傅立葉轉換紅外線光譜儀 五、雷射掃描式共軛焦顯微鏡 六、奈米粒徑及介面電位量測儀 七、可見光紫外光分光光譜儀 第 四 章 實驗材料與方法 一、實驗藥品 二、實驗儀器 三、實驗流程圖 四、光罩圖案設計及製作 五、微影蝕刻製程製備奈米結構陣列矽晶片 六、奈米壓印技術於PET薄膜上創建陣列結構 七、PET薄膜表面改質及修飾 (一)表面羥基改質 (二)APTES自組裝單分子層 (三)薄膜表面接枝Protein G (四)薄膜表面接枝Monoclonal Antibody (五)薄膜表面BSA Blocking 八、聚苯乙烯球表面接枝 (一)表面接枝Protein G (二)表面接枝Polyclonal Antibody (三)Blocking BSA 九、微流體基材製作 (一)上蓋製作 (二)基材封裝 十、雷射分析儀之分析 (一)奈米陣列結構深度影響探討 (二)腸毒素(Toxin A)及細胞毒素(Toxin B)檢量線製備 十一、表面型態的鑑定 十二、傅立葉轉換紅外光譜儀(FTIR)光譜鑑別 十三、X射線光電子能譜儀(XPS) 十四、雷射掃描式共軛焦顯微鏡螢光標定 十五、酵素結合免疫吸附分析法 (ELISA) 第 五 章 結果與討論 一、光罩設計與製作 二、圖案化表面分析 (一)一維二維奈米陣列矽晶片 (二)奈米壓印圖案化PET薄膜 三、奈米陣列光學性質 (一)光柵可見光繞射 (二)光柵雷射繞射 四、PET薄膜表面修飾之表徵分析 (一)薄膜表面形貌分析 (二)XPS能譜圖分析 (三)傅里葉轉換紅外線光譜測定 (四)雷射掃描式共軛焦顯微鏡 五、聚苯乙烯球之表徵分析 (一)聚苯乙烯球表面形貌 (二)XPS能譜圖 (三)聚苯乙烯球FTIR光譜測定 (四)DLS粒徑分析及Zeta Potential分析 (五)雷射掃描式共軛焦顯微鏡 六、不同尺寸基材檢測毒素之雷射分析 七、腸毒素(Toxin A)及細胞毒素(Toxin B)偵測極限分析 (一)雷射分析儀制定Toxin A和Toxin B檢量線 (二)SEM基材捕獲抗原程度分析 (三)雷射掃描式共軛焦顯微鏡 八、專一性抓取與干擾性分析 九、酵素結合免疫吸附分析法 (ELISA) 第 六 章 結論 第 七 章 參考文獻

    1.Ling-Sheng Jang , Hao-Juin Liu, Fabrication of protein chips based on 3-aminopropyltriethoxysilane as a monolayer. Biomed Microdevices, 2009. 11: p. 331-338.
    2.Sandeep Kumar Vashist, Comparison of 1-Ethyl-3-(3-Dimethylaminopropyl) Carbodiimide Based Strategies to Crosslink Antibodies on Amine-Functionalized Platforms for Immunodiagnostic Applications. Diagnostics (Basel), 2012. 2(3): p. 23-33.
    3.Jeong-Yeol Yoon, et al., The relationship of interaction forces in the protein adsorption onto polymeric microspheres. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999. 153: p. 413-419.
    4.Feng Wang, et al., Characterization of a Polyamine Microsphere and Its Adsorption for Protein. Molecular Sciences, 2013.14(1): p. 17-29.
    5.Teresa Basinska, Hydrophilic core-shell microspheres: a suitable support for controlled attachment of proteins and biomedical diagnostics, 2005. 5(12): p. 1145-1168.
    6.Jerome K. Hyun. et al., Rational Control of Diffraction and Interference from Conformal Phase Gratings: Toward High-Resolution 3D Nanopatterning. Advanced Optical Materials 2014.2 (12):p1213-1220.
    7.Carlo Nicosia and Jurriaan Huskens, Reactive self-assembled monolayers: from surface functionalization to gradient formation. Materials Horizons, 2014. 1: p. 32-45
    8.Cousty, J.; Marchenko, A., Substrate-induced freezing of alkane monolayers adsorbed on Au (111) dependant on the alkane/gold misfit. Surface science, 2002. 520(3): p. 128-136.
    9.Kien Cuong Nguyen, Quantitative analysis of COOH-terminated alkanethiol SAMs on gold nanoparticle surfaces. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2012.3(4): 045008.
    10.Dhawal Choudhary, et al., Bio-Molecular Applications of Recent Developments in Optical Tweezers. Biomolecules, 2019. 9(23)
    11.M. Kovačič,* J. Krč, B. Lipovšek, Modelling of diffraction grating based optical filters for fluorescence detection of biomolecules. Biomed Opt Express, 2014. 5(7): p. 2285-2300.
    12. Matthew G. Clark, Seohee Ma1, Chemical-imaging-guided optical manipulation of biomolecules. Chemical Biology, 2023. 11.
    13.Santosh Kumar , Ragini Singh, Recent optical sensing technologies for the detection of various biomolecules: Review. Optics & Laser Technology, 2021. 134
    14.Yun, Dong-Shin, Controlling Size and Distribution for Nano-sized Polystyrene Spheres. Bulletin of the Korean Chemical Society, 2010. 31(5): p..1345-1348
    15.Flaviana Yohanala P. T., et al., Preparation of Polystyrene Spheres Using Surfactant-Free Emulsion Polymerization . Modern Applied Science, 2015. 9(7)
    16.Baijun Liu, Mingyao Zhang, Guangfeng Wu, Huixuan Zhang, Synthesis of large-scale, monodisperse latex particles via one-step emulsion polymerization through in situ charge neutralization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016. 500: p. 127-136.
    17.L. B. Bangs, New developments in particle-based immunoassays: Introduction. Pure and Applied Chemistry, 1996. 68(10): p. 1873-1879.
    18.Fung Ling Yap , Yong Zhang., Assembly of polystyrene microspheres and its application in cell micropatterning. Biomaterials 2007. 28(14): p. 2328-2338.
    19.Ruiting Xu, et al., Recent Advances in Biomolecular Detection Based on Aptamers and Nanoparticles. Biosensors, 2023. 13(4): p. 474.
    20.N.N.Le, et al., Skorik, Fabrication of Miniaturized Microfluidic Paper-Based Analytical Devices for Sandwich Enzyme-Linked Immunosorbent Assays using INKJET Printing. Applied Biochemistry and Microbiology, 2021. 12(57): p. 257-261.
    21.Jing Xie, et al., A sandwich ELISA-like detection of C-reactive protein in blood by citicoline-bovine serum albumin conjugate and aptamer-functionalized gold nanoparticles nanozyme. Talanta, 2020. 217: p.121070.
    22.Ardeshir Rineh, et al., Clostridium difficile infection: molecular pathogenesis and novel therapeutics. Expert Rev Anti Infect Ther, 2014. 12(1): p. 131-150.
    23.Michael C. Abt, et al., Clostridium difficile colitis: pathogenesis and host defence. nature reviews microbiology, 2016. 14: p. 609-620.
    24.Alexander B. Smith, et al., From Nursery to Nursing Home: Emerging Concepts in Clostridioides difficile Pathogenesis. Infection and Immunity, 2020. 88(7)
    25.A. Shen, Clostridium difficile Toxins: Mediators of Inflammation.
    Journal of Innate Immunity, 2012. 4: p. 149-158.
    26.Daniel A, et al., Clostridium difficile Infection. The new england journal of medicine, 2015. 372: p. 1539-1548.
    27.Chih-Huan Chung, et al., Clostridium difficile Infection at a Medical Center in Southern Taiwan: Incidence, Clinical Features and Prognosis. Journal of Microbiology, Immunology and Infection, 2010. 43(2): p. 119-125.
    28.Yanal M. Murad, et al., False Negative Results in Clostridium difficile Testing. BMC Infectious Diseases, 2016. 16: p. 430.
    29.Wiep Klaas Smits, et al., Clostridium difficile infection, Nat Rev Dis Primers , 2017. 2: p. 16020.
    30.Lin, F.-P., et al., Isolation and label-free detection of circulating tumour cells by fluidic diffraction chips with a reflective laser beam system.. Chemical Engineering Journal, 2022. 436: p. 135206.
    31. Hyun, J. K., et al., Rational control of diffraction and interference from conformal phase gratings: toward high‐resolution 3D nanopatterning. Advanced Optical Materials, 2014. 2(12): p. 1213-1220.
    32.Salzillo, R., et al., Optimization of hyaluronan-based eye drop formulations. Carbohydrate polymers, 2016. 153: p. 275-283.
    33.Kol, R., et al., State‐Of‐The‐Art Quantification of Polymer Solution Viscosity for Plastic Waste Recycling. ChemSusChem, 2021. 14(19): p. 4071-4102.
    34.Lee, M., et al., Study of frequency dependence modulus of bulk amorphous alloys around the glass transition by dynamic mechanical analysis. Intermetallics, 2002. 10(11-12): p. 1061-1064.
    35.Mokkapati, S.; Beck, F.; Polman, A.; Catchpole, K., Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells. Applied Physics Letters 2009, 95 (5), 053115.
    36.Kondo, T.; Matsuo, S.; Juodkazis, S.; Misawa, H., Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals. Applied Physics Letters 2001, 79 (6), 725-727.
    37.Shir, D. J.; Nelson, E. C.; Chanda, D.; Brzezinski, A.; Braun, P. V.; Rogers, J. A.; Wiltzius, P., Dual exposure, two-photon, conformal phase mask lithography for three dimensional silicon inverse woodpile photonic crystals. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 2010, 28 (4), 783-788.
    38.Shir, D.; Nelson, E.; Chen, Y.; Brzezinski, A.; Liao, H.; Braun, P.; Wiltzius, P.; Bogart, K.; Rogers, J., Three dimensional silicon photonic crystals fabricated by two photon phase mask lithography. Applied Physics Letters 2009, 94 (1), 011101.
    39.Shir, D.; Liao, H.; Jeon, S.; Xiao, D.; Johnson, H. T.; Bogart, G. R.; Bogart, K. H.; Rogers, J. A., Three-dimensional nanostructures formed by single step, two-photon exposures through elastomeric Penrose quasicrystal phase masks. Nano letters 2008, 8 (8), 2236-2244.
    40.George, M. C.; Nelson, E. C.; Rogers, J. A.; Braun, P. V., Direct fabrication of 3D periodic inorganic microstructures using conformal phase masks. Angewandte Chemie 2009, 121 (1), 150-154.
    41.Chanda, D.; Abolghasemi, L.; Herman, P. R., One-dimensional diffractive optical element based fabrication and spectral characterization of three-dimensional photonic crystal templates. Optics Express 2006, 14 (19), 8568-8577.
    42.Bita, I.; Choi, T.; Walsh, M. E.; Smith, H. I.; Thomas, E. L., Large‐Area 3D Nanostructures with Octagonal Quasicrystalline Symmetry via Phase‐Mask Lithography. Advanced Materials 2007, 19 (10), 1403-1407.
    43.Drégely, D., Optical antennas: nanoscale radiation engineering and enhanced light-matter interaction. 2014.
    44.Jeon, S.; Malyarchuk, V.; White, J. O.; Rogers, J. A., Optically fabricated three dimensional nanofluidic mixers for microfluidic devices. Nano letters 2005, 5 (7), 1351-1356.
    45.Jang, J. H.; Dendukuri, D.; Hatton, T. A.; Thomas, E. L.; Doyle, P. S., A Route to Three‐Dimensional Structures in a Microfluidic Device: Stop‐Flow Interference Lithography. Angewandte Chemie International Edition 2007, 46 (47), 9027-9031.
    46.Park, J.; Wang, S.; Li, M.; Ahn, C.; Hyun, J.; Kim, D., K. Kim do, JA Rogers, Y. Huang, S. Jeon. Nat. Commun 2012, 3, 916.
    47.Jang, J.-H.; Jhaveri, S. J.; Rasin, B.; Koh, C.; Ober, C. K.; Thomas, E. L., Three-dimensionally-patterned submicrometer-scale hydrogel/air networks that offer a new platform for biomedical applications. Nano letters 2008, 8 (5), 1456-1460.
    48.Singer, J. P.; Lee, J.-H.; Kooi, S. E.; Thomas, E. L., Rapid fabrication of 3D terahertz split ring resonator arrays by novel single-shot direct write focused proximity field nanopatterning. Optics Express 2012, 20 (10), 11097-11108.
    49.Park, J.; Yoon, S.; Kang, K.; Jeon, S., Antireflection behavior of multidimensional nanostructures patterned using a conformable elastomeric phase mask in a single exposure step. Small 2010, 6 (18), 1981-1985.
    50.Park, J.; Park, J. H.; Kim, E.; Ahn, C. W.; Jang, H. I.; Rogers, J. A.; Jeon, S., Conformable Solid‐Index Phase Masks Composed of High‐Aspect‐Ratio Micropillar Arrays and Their Application to 3D Nanopatterning. Advanced Materials 2011, 23 (7), 860-864.
    51.Hyun, J. K.; Ahn, C.; Kang, H.; Kim, H. J.; Park, J.; Kim, K. H.; Ahn, C. W.; Kim, B. J.; Jeon, S., Soft Elastomeric Nanopillar Stamps for Enhancing Absorption in Organic Thin‐Film Solar Cells. Small 2013, 9 (3), 369-374.
    52.Guo, L. J., Nanoimprint lithography: methods and material requirements. Advanced materials 2007, 19 (4), 495-513.
    50.Oh, D. K.; Lee, T.; Ko, B.; Badloe, T.; Ok, J. G.; Rho, J., Nanoimprint lithography for high-throughput fabrication of metasurfaces. Frontiers of Optoelectronics 2021, 14 (2), 229-251.
    51.Zhu, J.; Wang, Z.; Lin, S.; Jiang, S.; Liu, X.; Guo, S., Low-cost flexible plasmonic nanobump metasurfaces for label-free sensing of serum tumor marker. Biosensors and Bioelectronics 2020, 150, 111905.
    52.Jiawook, R.; Heidari, B., Nanoimprint lithography and transdermal drug-delivery devices. In Emerging Applications of Nanoparticles and Architecture Nanostructures, Elsevier: 2018; pp 141-175.
    53.Endo, T.; Ozawa, S.; Okuda, N.; Yanagida, Y.; Tanaka, S.; Hatsuzawa, T., Reflectometric detection of influenza virus in human saliva using nanoimprint lithography-based flexible two-dimensional photonic crystal biosensor. Sensors and Actuators B: Chemical 2010, 148 (1), 269-276.
    54.Lee, J.; Lee, M., Improved light harvest in diffraction grating-embedded TiO2 nanoparticle film. Applied Physics A 2017, 123 (12), 1-8.
    55.Chen, J.-J.; Cheng, C.-C.; Chang, C.-J.; Lu, C.-H.; Chen, J.-K., Rapid label-free detection of Pseudomonas aeruginosa using a fluidic grating chip with a reflective laser system. Biosensors and Bioelectronics: X 2022, 10, 100138.
    56.Chang, C.-L.; Acharya, G.; Savran, C. A., In situ assembled diffraction grating for biomolecular detection. Applied physics letters 2007, 90 (23), 233901.
    57.Avella-Oliver, M.; Ferrando, V.; Monsoriu, J. A.; Puchades, R.; Maquieira, A., A label-free diffraction-based sensing displacement immunosensor to quantify low molecular weight organic compounds. Analytica Chimica Acta 2018, 1033, 173-179.
    58.Acharya, G.; Chang, C.-L.; Savran, C., An optical biosensor for rapid and label-free detection of cells. Journal of the American Chemical Society 2006, 128 (12), 3862-3863.
    59.Acharya, G.; Chang, C.-L.; Doorneweerd, D. D.; Vlashi, E.; Henne, W. A.; Hartmann, L. C.; Low, P. S.; Savran, C. A., Immunomagnetic diffractometry for detection of diagnostic serum markers. Journal of the American Chemical Society 2007, 129 (51), 15824-15829.
    60.Bigelow, W.; Pickett, D.; Zisman, W., Oleophobic monolayers: I. Films adsorbed from solution in non-polar liquids. Journal of Colloid Science 1946, 1 (6), 513-538.
    61.Nuzzo, R. G.; Allara, D. L., Adsorption of bifunctional organic disulfides on gold surfaces. Journal of the American Chemical Society 1983, 105 (13), 4481-4483.
    62.Cousty, J.; Marchenko, A., Substrate-induced freezing of alkane monolayers adsorbed on Au (111) dependant on the alkane/gold misfit. Surface science 2002, 520 (3), 128-136.
    63.Nguyen, K. C., Quantitative analysis of COOH-terminated alkanethiol SAMs on gold nanoparticle surfaces. Advances in Natural Sciences: Nanoscience and Nanotechnology 2012, 3 (4), 045008.
    64. Carolyn D Alonso, et al., Higher In Vivo Fecal Concentrations of Clostridioides difficile Toxins A and B in Patients With North American Pulsed-Field Gel Electrophoresis Type 1/Ribotype 027 Strain Infection, 2022. 75(11): p. 2019-2022.

    無法下載圖示 全文公開日期 2028/09/21 (校內網路)
    全文公開日期 2028/09/21 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE