簡易檢索 / 詳目顯示

研究生: 舒圳晟
Jiunn-Cherng Su
論文名稱: 鎢鋼性質最佳化: 粒度、鈷含量、添加劑影響
Optimization of mechanical properties of cemented carbide: influence of grain size, cobalt content, and grain growth inhibitors
指導教授: 顏怡文
Yee-Wen Yen
口試委員: 陳志銘
Zhi-Ming Chen
鄭明正
Cheng-Ming Cheng
施劭儒
Shao-Ru Shi
顏怡文
Yee-Wen Yen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 78
中文關鍵詞: 硬質合金鈷含量粒度晶粒成長抑制劑
外文關鍵詞: Cemented carbide, Cobalt content, Grain size, Grain growth inhibitor
相關次數: 點閱:287下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

碳化鎢顆粒之間由於結合性不佳,經過人們研究發現,可以將鈷熔融後有效地與碳化鎢相互連接,形成金屬與陶瓷的複合材料。最廣泛應用的鎢鋼圓棒刀具產品是含有10%鈷含量的材質,因為兼具足夠的硬度及韌性,適合被開發出需要耐磨耗、耐衝擊且不易脆斷的工具,在工業發展上扮演重要的角色,也正因為與工業發展關係密切,在這個進步速度爆炸的年代,舊有的10%鈷含量鎢鋼圓棒刀具材質已經無法滿足所有工作環境的需求,因此人們隨著工作條件需求傾向,調整鎢鋼產品的機械性質,進一步將工業發產推向更高的水平。
在品質提升方面,最直觀的方式除了改變碳化鎢的晶粒大小以外,許多學者或鎢鋼產品製造商也從調整碳化鎢與鈷的比例方面著手,歸納出碳化鎢晶粒越細則產品硬度越高;鈷含量越高則產品韌性越佳的趨勢,然而,一般認為硬度的提升會導致韌性降低,若只改變晶粒大小或調整鈷含量的不同,將難以得到兼具高硬度與高韌性的產品。
再更深入探討影響機械性質的因素後,發現鎢鋼產品的碳含量的確佔有舉足輕重的地位,碳含量過高、過低都會導致缺陷且使產品壽命降低。鎢鋼產品常被使用於高危險的作業環境,品質不佳必然產生使用者的安全上的疑慮並且不利於機台使用的穩定,同時帶給生產者及使用者雙方的不便。因此,在生產鎢鋼的過程中必須加入碳含量控制的因素,目的是為了將碳含量穩定在適當的範圍內。
本篇論文是由台灣科技大學與春保森拉天時進行產學合作計畫,致力於研究探究鎢鋼中碳化鉻與碳化釩的添加對鎢鋼機械性質與微結構的影響。為了再更精進鎢鋼的品質及開拓其使用範圍,參雜其他元素的理念提供給鎢鋼產業更上一層台階的機會,因此,許多碳化物,例如:碳化鈦、碳化鉻、碳化鉭、碳化釩等等,被嘗試著添加到碳化鎢與鈷的組合之中,人們利用不同元素彼此之間的相互作用,研究並找出是否能突破原有的極限,加上經驗、時間以及製程方面的累積,做出一步步的改善,鎢鋼產業將持續進化。


Tungsten carbide particles are difficult to joint to each other if there are no intermedia in between. Researchers have found that cobalt’s liquid phase has ability to reinforce the microstructure of tungsten carbide. Thereby, the most widely used tungsten carbide rods usually contain 10wt% of cobalt. This composition has characteristic of high wear-resistance, high impact strength, and high tolerance of chipping because the amount of cobalt provides sufficient toughness and tungsten carbide grains maintain the hardness. Tungsten carbide plays an important role in terms of industrial development. However, commonly used solid tool blanks with 10wt% cobalt is not suitable for all kinds of tasks, since end user’s working environment is becoming more and more difficult with rising industrial requirements, especially in the aerospace industry. Therefore, researchers tend to satisfy the working condition by means of promoting mechanical properties which are governed obviously by grains size of tungsten carbide and the proportion of cobalt.
Generally, tungsten carbide’s toughness and hardness are inversely proportional to each other if we merely alter those two parameters mentioned above. According to articles, carbon content indeed influences mechanical properties a lot due to percentages of carburization and wetting angle during sintering process. Therefore, carbon balance control is a crucial factor all over the processes. Wear resistance would greatly reduce if carbon content is over the limit, while insufficiency in carbon content will lead to brittleness and shorten tool’s life time. Tungsten carbide products are often used in the environment with high risks. If the quality is not stable, it is impossible to ensure the security to user and even harmful for the machines where the products being installed in.
Through the cooperation of National Taiwan University of Science and Technology(NTUST) and CB-CERATIZIT group(CBCT), experiments have been conducted mainly on the influences of mechanical properties and microstructure of tungsten carbide after doping with varied amount of cubic carbide, such as chromium carbide and vanadium carbide. In order to achieve further improvements, other researchers have started to dope different kinds of carbides, such as titanium carbide, chromium carbide, tantalum carbide, vanadium carbide, etc. Taking the advantage of chemical interaction between those carbides and tungsten carbide or cobalt, people have been trying to enhance mechanical properties of tungsten carbide and pushing the boundary in various applications.

摘要……………………………………………………………................I Abstract………………………………………………………..……........II 誌謝…………………………………………………………………......IV 目錄…………………………………………………………………....VI 圖目錄………………………………………………………….....IX 表目錄……………………………………………………………......XIII 第一章、 前言……………………………………………………….1 第二章、 文獻回顧………………………………………………….3 2-1粉末冶金………………………………………….………….3 2-1.1粉末冶金簡介……………………………..…………...3 2-1.2粉末體的性能………………………………….………3 2-1.3粉末壓製成型………………………………………….5 2-2粉末燒結………………………………………………………7 2-2.1燒結簡介………………………………………..……7 2-2.2固相燒結…………………………………………….9 2-2.3液相燒結…………………………………………...11 2-3鎢鋼(硬質合金)簡介…………………………….….………..14 2-3.1鎢鋼產業發展歷史……………………….………..14 2-3.2硬質合金對碳化鎢性能的主要要求………..…….15 2-4鎢鋼(硬質合金)的燒結………………………………….17 2-4.1鈷的作用…………………………………...…………17 2-4.2添加劑的作用…………………………………………18 2-4.3碳化釩VC與碳化鉻Cr3C2的抑制晶粒成長機制…21 2-4.3碳化釩與碳化鉻對鎢鋼產品固相燒結過程的影響…23 2-4.5碳化釩與碳化鉻添加對鎢鋼產品液相燒結的影響....26 2-4.6壓力對燒結過程的影響……………………….……...27 第三章、 實驗方法…………………………………….……………28 3-1粉末配置………………………………………………...…..28 3-2球磨混和……………………………….………………...…29 3-3乾燥………………………….……………………………...30 3-4入蠟…………………………………….…………………...31 3-5入蠟後乾燥…………………………………………………32 3-5壓胚……………………………………….………………...33 3-6燒結…………………………………….…………………...34 3-7檢驗……………………………...…………..……………...35 第四章、 結果與討論……………………………..…………………39 4-1鈷含量對鎢鋼產品物理性質影響…………………………...39 4-2碳化鎢粉末顆粒大小的選用………………………………...44 4-3 碳化釩(VC)添加的影響……………………………………..49 4-4 碳化鉻(Cr3C2)添加的影響…………………………………..55 4-5同時添加碳化釩(VC)與碳化鉻(Cr3C2)的影響…………...…60 4-6擁有外硬內軟特性的鎢鋼………………………………...…68 第五章、 結論………………………………………………………..73 第六章、 參考資料…………………………………………………..75

[1] 陳楚軒,硬質合金質量控制原理。
[2] 陳文革、王發展,粉末冶金工藝及材料。
[3] 果世駒,粉末燒結理論。
[4] 硬質合金,百科知識,http://baike.baidu.com/view/22604.htm。
[5] I. N. Chaporova, Y. A. Shchetina, Investigations of the Carburizing Process in Tungsten Carbide Hard Alloys with Cobalt and Nickel, Hard Metals Production Technology and Research in the U.S.S.R., (1964) 196-211.
[6] I. N. Chaporova, V. I. Tret'yakov, E. A. Shchetina, T. G. Makarenko, The Solid Solubilities of Some Stable Carbides in Cobalt, Nickel and Iron at 1250oC, Hard Metals Production Technology and Research in the U.S.S.R., (1964) 165-178.
[7] R. M. Genga, L. A. Cornish, G. Akdogan, Effect of Mo2C Additions on the Properties of SPS Manufactured WC-TiC-Ni Cemented Carbides, International Journal of Refractory Metals and Hard Materials, 41 (2013) 12-21.
[8] L. Nan, H. Yuehui, W. Chonghu, J. Yao, The Effects of Micron WC Contents on the Microstructure and Mechanical Properties of Ultrafine WC-(micron WC-Co) Cemented Carbide, International Journal of Refractory Metals and Hard Materials, 38 (2013) 140-143.
[9] J. Poetschke, V. Richter, T. Gestrich, A. Michaelis, Grain Growth During Sintering of Tungsten Carbide Ceramics, International Journal of Refractory Metals and Hard Materials, 43 (2014) 309-316.
[10] J. Poetschke, V. Richter, R. Holke, Influence and Effectivity of VC and Cr3C2 Grain Growth Inhibitors on Sintering of Binderless Tungsten Carbide, International Journal of Refractory Metals and Hard Materials, 31 (2012) 218-223.
[11] C.W. Morton, D.J. Wills, K. Stjernberg, The Temperature Ranges for Maximum Effectiveness of Grain Growth Inhibitors in WC-Co Alloys, International Journal of Refractory Metals and Hard Materials, 23 (2005) 287-293.
[12] M. Dejiang, K. Zili, L. Yinjuan, W. Yongkun, G. Shangpan, L. Xi, L. Wantao, W. Yonghua, D. Yanchun, L. Li, Sub-micron Binderless Tungsten Carbide Sintering Behavior under High Pressure and High Temperature, International Journal of Refractory Metals and Hard Materials, 54 (2016) 427-432.
[13] J. Poetschke, V. Richter, A. Michaelis, Fundamentals of Sintering Nanoscaled Binderless Hardmetals, International Journal of Refractory Metals and Hard Materials, 49 (2015) 124-132.
[14] V. Bounhoure , S. Lay, S. Coindeau, S. Norgren, E. Pauty , J.M. Missiaen, Effect of Cr Addition on Solid State Sintering of WC-Co Alloys. Intertional Journal of Refractory Metals and Hard Materials, 52 (2015) 21-28.
[15] I. Konyashin, A.A. Zaitsev, D. Sidorenko, E.A. Levashov, B. Ries, S.N. Konischev, M. Sorokin, A.A. Mazilkin, M. Herrmann, A. Kaiser, Wettability of Tungsten Carbide by Liquid Binders in WC-Co Cemented Carbides: Is It Complete for All Carbon Contents, International Journal of Refractory Metals and Hard Materials, 62 (2017) 134-148.
[16] Clark, Bryce, Cobalt Facts, Cobalt Development Institute, (1993).
[17] D.R. Milner, R.F. Snowball, Densification Processes in the Tungsten Carbide-Cobalt System, Powder Metallurgy, 11 (1968) 23-40.
[18] R.J. Nelson, D.R. Milner, Densification Processes in the Tungsten Carbide-Cobalt System, Powder Metallurgy, 15 (1972) 346-363.
[19] A. Petersson , J. Agren, Rearrangement and Pore Size Evolution During WC-Co Sintering Below the Eutectic Temperature. Acta Materialia, 53 (2005) 1673-1683
[20] C.W. Morton, D.J. Wills, K. Stjernberg, The Temperature Ranges for Maximum Effectiveness of Grain Growth Inhibitors in WC-Co Alloys, International Journal of Refractory Metals & Hard Materials, 23 (2005) 287-293.
[21] S. Lay, S. Hamar-Thibault, A. Lackner, Location of VC in VC, Cr3C2 Co-doped WC-Co Cermets by HREM and EELS, International Journal of Refractory Metals and Hard Materials, 20 (2002) 61-69.
[22] S. Lay, M. Loubradou, Polarity of Prismatic Facets Delimiting WC Grains in WC–Co Alloys, Micron, 41 (2010) 472-477.
[23] P. Warbichler, F. Hofer, W. Grogger, A. Lackner, EFTEM-EELS Characterization of VC and Cr sub 3 C sub 2 Doped Cemented Carbides, 15th International Plansee Seminar, (2001).
[24] Ch. Toufar, W.D. Schubert, M. Hashiya, Y. Kubo, On the Formation of Precipitations in Highly (Cr,V)-doped Cemented Carbides, 18th Plansee Seminar. Reutte, Austria, (2013).
[25] M. Kawakami, O. Terada, K. Hayashi, Effect of Sintering Cooling Rate on V Segregation Amount at WC/Co Interface in VC-doped WC-Co Fine-Grained Hardmental, Journal of the Japan Society of Powder and Powder Metallurgy, 51 (2004) 576-585.
[26] W. Hongtao, T. Webb, W. Jonathan, Different Effects of Cr3C2 and VC on the Sintering Behavior of WC-Co Materials, International Journal of Refractory Metals and Hard Materials, 53 (2015) 117-122.
[27] N.G. Hashe, S.M. Norgren, H.O. Andren, J.H. Neethling, Reduction of Carbide Grain Growth in WC-VC-Co by Sintering in a Nitrogen Atmosphere, International Journal of Refractory Metals and Hard Materials, 27 (2009) 20-25.
[28] J. Zackrisson, B. Jansson, G.S. Uphadyaya, H.O. Andren, WC-Co Based Cemented Carbides With Large Cr3C2 Additions, International Journal of Refractory Metals and Hard Materials, 16 (1998) 417-422.
[29] 相图及相关文章 Diagrammes de phases et articles, http://www.factsage.cn/fact/download_c.php。
[30] H. Fischmeister, H.E. Exner. Theorien des Sinterns, Teil I: Das Sintern im festen Zustand Anfangsstadien, Metallurgy 18 (1964) 932-946.
[31] G. Gottstein. Rekristallisation metallischer Werkstoffe, Recrystallisaton of Metallic Materials, Oberursel DGM, (1984).
[32] V. Richter, M. Ruthendorf. Patent Wasserstrahlschneidhochdruckdüse, DE 100 52 021 A1, (2000).
[33] S. Grasso, J. Poetschke, V. Richter, Low-Temperature Spark Plasma Sintering of Pure Nano WC Powder, Journal of the American Ceramic Society, 96 (2013) 1702-1705.
[34] J.M. Sanchez, A. Ordonez, R. Gonzalez, HIP After Sintering of Ultrafine WC-Co Hardmetals, International Journal of Refractory Metals and Hard Materials, 23 (2005) 193-198.
[35] 磁滯曲線,https://zh.wikipedia.org/wiki。
[36] 洛式硬度測試,https://zh.wikipedia.org/zh-hant。
[37] 維式硬度試驗,https://zh.wikipedia.org/wiki。
[38] L. Anhai, Z. Jun, W. Dong, G. Xinliang, T. Hongwei, Three-Point Bending Fatigue Behavior of WC-Co Cemented Carbides, Materials and Design, 45 (2013) 271-278.
[39] S. Lay, S. Hamar-Thibault, A. Lackner, Location of VC in VC, Cr3C2 codoped WC-Co cermets by HREM and EELS, International Journal of Refractory Metals & Hard Materials, 20 (2002) 61-69.
[40] J. Potschke, M. Mayer, V. Richter, Hard Materials-Processing 1: Formation of Carbide Segregations in Nanoscaled Hardmetals, European Congress and Exhibition on Powder Metallurgy, European PM Conference Proceedings, The European Powder Metallurgy Association, (2015).

無法下載圖示 全文公開日期 2022/07/25 (校內網路)
全文公開日期 2024/07/25 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE