簡易檢索 / 詳目顯示

研究生: 李振誌
Zhen-Zhi Li
論文名稱: 氯離子於碳化卜特蘭水泥粉末與漿體中的吸脫附行為
Adsorption and Desorption of Chloride Ion in Carbonated Portland Cement Powder and Pastes
指導教授: 陳君弢
Chun-Tao Chen
口試委員: 黃然
Ran Huang
張大鵬
Ta-Peng Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 139
中文關鍵詞: 氯離子卜特蘭水泥碳化吸脫附Friedel’s salt鋼筋腐蝕
外文關鍵詞: chlorirde ion, Friedels’ salt
相關次數: 點閱:290下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要為探討影響水泥中氯離子析出之因素,包括水泥本身含氯離子量、外加氯離子量、養護及碳化等,期間計算水泥漿體中游離氯離子析出比例和氫氧根離子濃度之比值。首先,針對國內市面上各廠牌水泥取樣進行成分分析並選擇Cl-/C3A比值高、中和低者進行後續試驗。試驗結果發現,氯離子析出量主要隨著水泥本身氯離子含量增加而增加,水灰比較低時析出量較高。水化或碳化皆減少水泥粉末的氯離子析出比例。就水泥漿體而言,養護可減少氯離子析出比例。相反地,受到碳化則增加氯離子析出比例,與水泥粉末受到碳化的趨勢相反。就氯離子濃度與氫氧根離子濃度比值變化而言,主要受到氫氧根離子濃度高低影響。微觀分析發現外加氯離子透過化學鍵結反應生成Friedel’s salt,受到碳化時,Friedel’s salt解離並釋放出游離氯離子,此時游離氯離子持續增加且pH值下降至9,而游離氯離子濃度與氫氧根離子濃度之比值遠大於0.6,可能提高鋼筋腐蝕的機率。


    This study explores the factors influencing the release of the chloride ion in the Portland cement, including the chloride content in cement, amount of foreign chloride ion, hydration, carbonation and so on. The ratios of the released chloride ion and the ratio of the free chloride ion concentration to the hydroxyl ion concentration in the pastes were calculated. During the study, the domestic commercial Portland cements were collected and their compositions were determined. The ones with high, medium, and low Cl-/C3A ratios were selected. Results showed that the release of the chloride ion was increased with the chloride contents in the cements. The release was high when the w/c was reduced. For the cement powders, both the hydration and carbonation reduced the release. For the cement pastes, the curing reduced the release, but the carbonation increased the release, in contrast to the release in the cement powders. The ratio of the chloride ion concentration to the hydroxyl ion concentration was found mostly influenced by hydroxyl ion concentration. The microstructural analyses showed that the Friedel’s salt was formed by the chemical bonding of the chloride ions. The salt was decomposed and released the bound chloride under carbonation. At this time, the free chloride ions were increased, the pH was reduced and lower than 9, and the ratio of the chloride ion concentration to the hydroxyl ion concentration was much more than 0.6, thereby possibly inducing reinforcement corrosion.

    摘要 Abstract 目錄 表目錄 圖目錄 第一章 緒論 1.1 研究動機 1.2 研究目的 1.3 研究方法與流程 第二章 文獻回顧 2.1氯離子的基本性質 2.1.1混凝土中的氯離子來源 2.1.2氯離子型態 2.1.3氯離子的擴散行為 2.1.4 氯離子含量檢測 2.2碳化 2.2.1碳化原理 2.2.2影響碳化之因素 2.2.3混凝土碳化之影響 2.2.4混凝土碳化測定方法 2.3氯離子與鋼筋腐蝕之關係 2.3.1腐蝕機理 2.3.2鋼筋混凝土之腐蝕機理 2.3.3混凝土中氯離子濃度之臨界值 2.4混凝土中碳化與氯化物之複合影響 2.4.1碳化後氯化物侵入 2.4.2氯化物侵入後碳化 2.4.3碳化與氯化物侵入交互循環 第三章 試驗計畫 3.1試驗內容及變數 3.1.1變數說明 3.1.2編碼說明 3.2試驗材料與設備 3.2.1試驗材料 3.2.2試驗設備 3.3試驗設計與項目 3.3.1酸溶性氯離子 3.3.2水溶性氯離子(以水灰比0.6為例) 3.3.3水溶性氯離子(預加氯離子) 3.3.4水化水泥的水溶性氯離子(養護環境:二氧化碳0 %、相對溼度70 %) 3.3.5水化水泥的水溶性氯離子(以養護環境:養護7天,二氧化碳濃度:0%、相對溼度:70%為例) 3.3.6水化水泥的水溶性氯離子(養護環境:二氧化碳濃度:50%、相對溼度:70%) 3.3.7水化水泥的水溶性氯離子(以養護環境:養護7天,二氧化碳濃度:50%、相對溼度:70%為例) 3.3.8 X光繞射分析儀(XRD) 第四章 試驗結果與討論 4.1前言 4.2水泥溶液之總氯離子量 4.3水灰比對氯離子析出的影響 4.4外加氯離子量對氯離子析出的影響 4.5水化對氯離子析出的影響 4.5.1水泥粉末 4.5.2水泥漿體 4.6碳化對氯離子析出的影響 4.6.1水泥粉末 4.6.2水泥漿體 第五章 結論與建議 5.1 結論 5.2 建議 參考文獻

    [1] Arya, C., Buenfeld, N. R., Newman, J. B. (1990). "Factors influencing chloride-binding in concrete." Cement and Concrete Research 20(2): 291-300.

    [2] Babushkin, V. I., Matveyev, G. M, (1985). " Thermodynamics of Silicates." Springer-Verlag.

    [3] Berger, R. L., Young, J. F., Young, J. F. (1972). " Acceleration of hydration of calcium silicates by carbon dioxide treatment." Acceleration of hydration of calcium silicates by carbon dioxide treatment 240(97): 16-18.

    [4] Chang, C. F., Chen, J. W. (2006). "The experimental investigation of concrete carbonation depth." Cement and Concrete Research 36(9): 1760-1767.

    [5] Crank, J. (1964). "The mathematics of diffusion." Clarendon Press.

    [6] Delagrave, A., Marchand, J., Ollivier, J. P., Julien, S., Hazrati, K. (1997). "Chloride binding capacity of various hydrated cement paste systems." Advanced Cement Based Materials 6(1): 28-35.

    [7] Jang, J. G., Kim, H. J., Kim, H. K., Lee, H. K. (2016). "Resistance of coal bottom ash mortar against the coupled deterioration of carbonation and chloride penetration." Materials & Design 93: 160-167.

    [8] Jerga, J. (2004). "Physico-mechanical properties of carbonated concrete." Construction and Building Materials 18(9): 645-652.

    [9] Jin, M., Gao, S., Jiang, L., Chu, H., Lu, M., Zhi, F. F. (2018). "Degradation of concrete with addition of mineral admixture due to free chloride ion penetration under the effect of carbonation." Corrosion Science 138: 42-53.

    [10] Mindess, S., Young, J. F. (1981). "Concrete." Englewood Cliffs, 30-60.

    [11] Jerga, J. (2004). "Physico-mechanical properties of carbonated concrete." Construction and Building Materials 18(9): 645-652.

    [12] Ramezanianpour, A. A., Ghahari, S. A., Esmaeili, M. (2014). "Effect of combined carbonation and chloride ion ingress by an accelerated test method on microscopic and mechanical properties of concrete." Construction and Building Materials 58: 138-146.

    [13] Richardson, M.G. (2014). " Fundamentals of durable reinforced concrete. "CRC Press.

    [14] Roberts, M.H. (1962). " Effect of calcium chloride on the durability of pre-tensioned wire in prestressed concrete." Magazine of Concrete Research 14(42): 143-154.

    [15] Schweitzer, P. (2010). "Fundamentals of Corrosion. Boca Raton. " CRC Press.

    [16] Silva, C. A., Reis, R. J. P., Lameiras, F. S., Vasconcelos, W. L. (2002). " Carbonation-Related Microstructural Changesin Long-Term Durability Concrete. " Materials Research. 5(3), 287-293.

    [17] Slegers, P. A., Rouxhet, P. G. (1976). "Carbonation of the hydration products of tricalcium silicate." Cement and Concrete Research 6(3): 381-388.

    [18] Song, H. W., Kwon, S. J. (2007). "Permeability characteristics of carbonated concrete considering capillary pore structure." Cement and Concrete Research 37(6): 909-915.

    [19] Suryavanshi, A. K., Narayan Swamy, R. (1996). " Stability of Friedel's salt in carbonated concrete structural elements." Cement and Concrete Research 26(5): 729-741.

    [20] Wang, Y., Nanukuttan, S., Bai, Y.,Basheer, P. A. M. (2017). "Influence of combined carbonation and chloride ingress regimes on rate of ingress and redistribution of chlorides in concretes." Construction and Building Materials 140: 173-183.

    [21] Yonezawa, T., Ashworth, V., Procter, R. P. M. (1988). "Pore Solution Composition and Chloride Effects on the Corrosion of Steel in Concrete." CORROSION 44(7): 489-499.

    [22] 林金面 (2005). 工程材料. 台北市, 文荃書局股份有限公司.
    [23] 林致緯 (2006). 以鹽水浸漬試驗與快速氯離子滲透試驗探討混凝土中氯離子擴散行為, 國立海洋大學材料工程研究所. 碩士論文: 9-13.

    [24] 柯賢文 (2012). 腐蝕及其防制. 台北市, 全華圖書股份有限公司.

    [25] 莊秋明 (1991). "鋼筋或預力混凝土橋樑等構造物鹽害之防治研究." 防蝕工程 5(2): 14-26.

    [26] 陳世政 (2018). 氯離子於水泥主要成分相與卜作嵐材料的吸附行為, 國立台灣科技大學營建工程系. 碩士論文: 68-70.

    [27] 牛荻濤等 (1995). 混凝土中性化的概率模型及中性化可靠性分析. 西安建築科技大學學報 27(3):253-256.

    無法下載圖示 全文公開日期 2024/01/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE