簡易檢索 / 詳目顯示

研究生: 張晶雅
Ching-Ya Chang
論文名稱: 台北車站室內導航尋路策略及介面型式之研究
Research on the Indoor Wayfinding Strategy and Interface Type of Taipei Main Station
指導教授: 陳建雄
Chien-Hsiung Chen
口試委員: 柯志祥
Chih-Hsiang Ko
范振能
Jeng-Neng Fan
學位類別: 碩士
Master
系所名稱: 設計學院 - 設計系
Department of Design
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 132
中文關鍵詞: 尋路策略尋路行為介面型式室內導航
外文關鍵詞: Wayfinding strategy, Wayfinding behavior, User interface, Indoor navigation
相關次數: 點閱:184下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 尋路是人一項重要的能力,當我們在尋路的過程中遇到困難時,容易產生負面的生理與心理感受,室內尋路行為涉及水平與垂直的移動,相較室外尋路更加複雜。隨著科技發展,已有許多輔助尋路的導航工具運用於室內空間,而目前數位室內導航工具的介面型式主要以圖像式介面為主,然而隨著對話式介面的應用逐漸提升,卻較少見對話式介面型式之導航工具,因此本研究將探討尋路行為與介面型式應用於導航之影響,期望能透過本研究探討導航輔助工具更多的可能性。

    本研究實驗分為兩階段:(1) 前導實驗邀請四位受測者以口語描述路徑的方式,定義出指定路線中之關鍵地標,將實驗結果彙整出指定路線之路徑描述,並且建置出指定路線的導航內容,將其應用於第二階段的驗證實驗 (2)第二階段的驗證實驗以3 (俯瞰式、路徑式、混合式) × 2 (介面式、路徑式) 的雙因子組間的實驗設計方式進行,邀請共 48 位的受測者以線上測試的型式,個別操作 6 項實驗樣本進行測試,並測量依變數:判斷方向錯誤次數、任務時間績效、系統易用性尺度量表 (SUS)、 NASA-工作負荷量表 (NASA-TLX)、地標記憶數量。

    實驗結果得知使用圖像式介面與對話式介面之導航工具對尋路行為皆無顯著差異,而採用不同尋路策略之尋路工具在跨樓層之室內環境會影響尋路行為,介面型式會對受測者採用尋路策略產生影響,若對話式介面型式之導航工具能具有更佳的介面設計彈性,則將能有助於提升導航輔助工具應用於社群軟體上之聊天機器人的尋路表現。本研究提出之設計建議如下:(1) 路徑式尋路策略較適用於跨樓層的室內導航;(2) 對話式介面受限於平台的規格,其資訊呈現方式的彈性較小; (3) 樓層轉換可視為一個新的路徑起點,應在樓層起點以地標輔助重新定位;(4) 室內導航應提供足夠且精簡的導航資訊,而非越多越好。


    Wayfinding is an important ability to human. When a human encounters difficulties in the process of wayfinding, s/he will have negative feelings. Indoor wayfinding involves horizontal and vertical movement, which is more complicated than outdoor wayfinding. With the development of the science and technology, many navigation tools for assisting wayfinding have been used in indoor spaces. At present, the interface type of navigation tools is designed mainly based on graphic user interface. However, with the gradual improvement of the application of conversational user interface, the navigation tools with conversational interface type are still rare. Thus, this study will explore the effects of wayfinding behavior and interface type applied to navigation, expecting to look for more possibilities of designing navigation aids.

    The experiment is divided into two stages: (1) The pilot experiment invites four participants to describe the particular route in oral. Define the key landmarks in the route and generating the navigation description of the route. Compile the experimental results into the route description of the designated route is the purpose of the pilot experiment. The results are applied to the second-stage of verification experiment. (2) The verification experiment is a two-factor experiment design, i.e., 3 (survey strategy, route strategy, and combine strategy) × 2 (graphic user interface and conversational user interface). In the experiment, 48 participants were invited to individually conduct the online test with 6 prototypes. There are 5 dependent variables were measured, i.e., the number of wrong turns, the time performance of tasks, System Usability Scale, NASA-Task Load Index, and number of recalling landmarks.

    The results of experiment revealed that there existed no significant difference in the wayfinding behavior between the navigation tools of graphic user interface and the dialogue interface. The navigation tools using different wayfinding strategies may affect the wayfinding behavior in the indoor environment of different floors. The interface type will affect that which wayfinding strategies will be used. If the navigation tool of the conversational user interface type kept more flexibility on interface design, it might improve the wayfinding performance of the navigation chatbots regarding social software. The design suggestions are as follows: (1) Route strategy is more suitable for indoor navigation across floors; (2) Conversational user interface is limited by the specifications of the interface platform, and the presentation of information is less flexible; (3) Floor transitions point can be regarded as a starting point of new route. Repositioning should be aided by landmarks at the starting point of the floor; (4) Indoor navigation should provide sufficient and concise navigation information, rather than superfluous information.

    論文摘要 ii Abstract iv 誌謝 vi 圖表索引 x 第一章 緒論 1 1.1研究背景與動機 1 1.2研究目的 3 1.3研究範圍與限制 3 1.4研究流程與架構 4 第二章 文獻探討 6 2.1尋路行為 6 2.1.1環境特徵 9 2.1.2空間能力 12 2.1.3尋路策略 13 2.2 導航與路徑描述 14 2.3使用者介面 16 2.3.1圖像式介面定義與概述 17 2.3.2對話式使用者介面定義與概述 20 2.3.3圖像式與對話式使用者介面之比較 23 2.4 文獻小結 25 第三章 研究方法與實驗流程 27 3.1研究方法 27 3.1.1放聲思考法 (Thinking aloud) 27 3.1.2 訪談法 (Interview method) 27 3.1.3實驗法 (Experimentation method) 28 3.2實驗規劃 28 3.2.1 實驗場域 28 3.2.2 前導實驗 29 3.2.3 正式實驗 30 第四章 前導實驗與結果 31 4.1 指定路線說明 31 4.2 受測者分析 34 4.3 關鍵地標分析 34 4.4 導航描述路徑分析 42 第五章 驗證實驗與結果 46 5.1 實驗說明 46 5.1.1 實驗樣本 46 5.1.2 實驗工具 50 5.1.3 實驗任務 51 5.1.4 實驗流程 54 5.2 受測者分析 55 5.3 判斷錯誤次數 56 5.4 任務時間績效 58 5.4.1 路徑節點七 59 5.4.2 路徑節點十三 66 5.5 系統易用性尺度量表(SUS)分析 70 5.6 NASA-工作負荷量表 ( NASA-TLX ) 分析 72 5.6.1 心智負荷 75 5.6.2 生理負荷 76 5.6.3 時間負荷 77 5.6.4 努力 78 5.6.5 表現績效 79 5.6.6 挫折程度 80 5.7 地標記憶數量 81 第六章 結論與建議 86 6.1 研究結論 86 6.2 研究建議 89 參考文獻 91 中文參考文獻 91 英文參考文獻 93 網路參考文獻 98 附錄一、實驗問卷 99 附錄二、系統易用性尺度量表 117 附錄三、NASA-工作負荷量表 118

    中文參考文獻
    方裕民(1999)。GUI 介面設計理論與實務-以家庭娛樂系統設計案為例。中日設計教育研討會論文集,雲林科技大學,47-60,
    方裕民(2003)。人與物的對話:互動介面理論與實務(初版)。田園城市,台北,48。
    柯庭歡(2019)。訊息個人化與過場動畫介面之醫院導航服務。碩士論文,國立臺北科技大學工業設計系創新設計碩士班,台北市。。
    倪僑駿(2018)。以「QR Code」園區導航系統取代紙本地圖與尋路指標。碩士論文,國立臺北科技大學工業設計系創新設計碩士班,台北市。。
    陳明石、邱登尉(2010)。2展覽空間平面尋路地圖表現形式之使用性研究。工業設計,201005(122),13-19。
    陳怡利(2009)。數位化之圖像式概念介面設計平台。大同大學工業設計學系(所)碩士論文,台北市。
    陳格理(2007)。圖書館的尋路與標示。台北市:文華圖書館管理資訊股份有限公司。
    陳靜儀(2017)。手機室內導航應用於地下空間避難之最適化設計—以台北車站為例。碩士論文,國立臺北科技大學工業設計系創新設計碩士班(碩士在職專班),台北市。
    張耕慈(2017)。台北車站尋路地圖中地標表現型式之設計研究。碩士論文,國立臺北科技大學工業設計系創新設計碩士班,台北市。
    楊清田、黃鈴池、王藍亭 (2011)。設計研究方法。第十二章(頁201-235)。臺北縣:全華圖書。
    廖珈珺(2017)。商業空間語音導引設計。碩士論文,國立台北科技大學,台北市。
    魏鴻麟(2013)。電腦圖像及圖形化使用者介面之設計專利的發展趨勢分析。臺灣期刊,法律智慧財產權,201301 (169)
    羅之維 (2016)。次世代醫療環境的智慧尋路設計。國立交通大學應用藝術研究所博士論文,新竹市。
    McAndrew, F. T. (2020). 環境心理學(危芷芬譯;2 版),台北市:五南出版。(原著出版於 1995)
    英文參考文獻
    Aaron, M. (1995). Principles of effective visual communication for graphical user interface design. Human-computer interaction: toward the year 2000 (pp. 425–441). San Francisco, CA: Morgan Kaufmann Publishers Inc.
    Arthur, P., & Passini, R. (1992). Wayfinding: people, signs, and architecture. New York, NY : McGraw-Hill.
    Barkley, C. L., & Gabriel, K. I. (2007). Sex differences in cue perception in a visual scene: Investigation of cue type. Behavioral Neuroscience, 121(2), 291–300. doi: 10.1037/0735-7044.121.2.291
    Bickmore, T. W., Silliman, R. A., Nelson, K., Cheng, D. M., Winter, M., Henault, L., & Paasche‐Orlow, M. K. (2013). A randomized controlled trial of an automated exercise coach for older adults. Journal of the American Geriatrics Society, 61(10), 1676-1683. doi: 10.1111/jgs.12449
    Blumberg, R., & Devlin, A. S. (2006). Design issues in hospitals: The adolescent client. Environment and Behavior, 38(3), 293-317. doi: 10.1177/0013916505281575
    Carpman, J. R., Grant, M. A., & Simmons, D. A. (1984). No more mazes: Research about design for wayfinding in hospitals. Ann Arbor, MI: University of Michigan.
    Colle, H. A., & Reid, G. B. (1998). The room effect: Metric spatial knowledge of local and separated regions. Presence: Teleoperators and Virtual Environments, 7(2), 116-128. doi: 10.1162/105474698565622
    Constine, L. S., Tarbell, N. J., & Halperin, E. C. (2016). Pediatric radiation oncology. Philadelphia, PA: Lippincott Williams & Wilkins/Wolters Kluwer.
    Denis, M. (1997). The description of routes: A cognitive approach to the production of spatial discourse. Current psychology of cognition, 16(4), 409-458
    Denis, M., Pazzaglia, F., Cornoldi, C., & Bertolo, L. (1999). Spatial discourse and navigation: An analysis of route directions in the city of Venice. Applied Cognitive Psychology, 13(2), 145–174.
    Downs, R. M., & Stea, D. (Eds.) (1973), Image and environment: Cognitive mapping and spatial behavior. Illinois, IL: Aldine.
    Galea, L. A., & Kimura, D. (1993). Sex differences in route-learning. Personality and individual differences, 14(1), 53-65.
    Gluck M. (1991) Making Sense of Human Wayfinding: Review of Cognitive and Linguistic Knowledge for Personal Navigation with a New Research Direction. In: Mark D.M., Frank A.U. (Eds) Cognitive and Linguistic Aspects of Geographic Space (pp. 117-135). Dordrecht, Nederland: Springer, Dordrecht. doi: 10.1007/978-94-011-2606-9_9
    Golledge, R. G. (1999). Human wayfinding and cognitive maps. In R. G. Golledge (Ed.), Wayfinding Behavior: Cognitive Mapping and Other Spatial Processes (pp. 5–45). Baltimore, MD: The Johns Hopkins University Press.
    Hart, R. A., & Moore, G. T. (1973). The Development of Spatial Cognition: A Review. In R. M. Downs & D. Stea (Eds.), Image & environment: Cognitive mapping and spatial behavior (pp. 246–288). Piscataway, NJ: AldineTransaction.
    Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. Advances in psychology, 52 ,139-183. doi: 10.1016/S0166-4115(08)62386-9
    Hund, A. M., & Minarik, J. L. (2006). Getting from here to there: Spatial anxiety, wayfinding strategies, direction type, and wayfinding efficiency. Spatial cognition and computation, 6(3), 179-201.
    Jin, B., Sahni, S., & Shevat, A. (2018). Designing Web APIs: Building APIs That Developers Love. California, CA: O'Reilly Media, Inc.
    Johnson, J. (2007). GUI bloopers 2.0: common user interface design don'ts and dos (2nd ed.). Massachusetts, MA: Morgan Kaufmann Publishers.
    Kaplan, S. (1979). Perception and landscape: conceptions and misconceptions. In Elsner, G. H. (Eds.), Proceedings of Our National Landscape Conference. USDA Forest Service General Technical Report PSW35, 241-248. Nevada, NV.
    Kitchin, R. M. (1994). Cognitive maps: What are they and why study them?. Journal of environmental psychology, 14(1), 1-19.
    Kyllonen, P. C., Lohman, D. F., & Woltz, D. J. (1984). Componential modeling of alternative strategies for performing spatial tasks. Journal of Educational Psychology, 76(6), 1325-1345. doi: 10.1037/0022-0663.76.6.1325
    Lawton, C. A. (1994). Gender differences in way-finding strategies: Relationship to spatial ability and spatial anxiety. Sex roles, 30(11-12), 765-779.
    Lawton, C. A. (2010). Gender, spatial abilities, and wayfinding. In Handbook of gender research in psychology, New York, NY: Springer
    Lawton, C. A., & Kallai, J. (2002). Gender differences in wayfinding strategies and anxiety about wayfinding: A cross-cultural comparison. Sex roles, 47(9-10), 389-401.
    Lester, J., Branting, K., & Mott, B. (2004). Conversational agents. The Practical Handbook of Internet Computing, 220-240.
    Lynch, K. (1960). The Image of the city. Cambridge, MA: The MIT Press.
    Mark, D. (1993) Human spatial cognition. In Medyckyj-Scott, D. & Hearnshaw, H. M. (Eds.). Human Factors in Geographical Information System (pp.51–60). Buffalo. NY: Belhaven Press.
    Mauldin, M. L. (1994). Chatterbots, tinymuds, and the turing test: Entering the loebner prize competition. AAAI, 94, 16-21.
    May, A. J., Ross, T., Bayer, S. H., & Tarkianen, M. J., (2003) Pedestrian navigation aids: Information requirements and design implications. Personal & Ubiquitous Computing, 7(6), 331-338.
    Michon PE., Denis M. (2001) When and Why Are Visual Landmarks Used in Giving Directions? In Montello D.R. (eds) Spatial Information Theory. COSIT 2001. Lecture Notes in Computer Science, 2205. doi: 10.1007/3-540-45424-1_20
    O’Neill, M. J. (1991). Effects of Signage and Floor Plan Configuration on Wayfinding Accuracy. Environment and Behavior, 23(5), 553–574.
    Passini, R. (1984). Spatial representations, a wayfinding perspective. Journal of environmental psychology, 4(2), 153-164.
    Passini, R. (1992). Wayfinding in architecture (2nd ed.). New York: Van Nostrand Reinhold Company.
    Passini, R. (1996). Wayfinding design: logic, application and some thoughts on universality. Design Studies, 17(3), 319-331.
    Passini, R., Rainville, C., Marchand, N., & Joanette, Y. (1998). Wayfinding and dementia: Some research findings and a new look at design. Journal of Architectural and Planning Research, 15(2), 133-151.
    Peponis, J., Zimring, C., & Choi, Y. K. (1990). Finding the building in wayfinding. Environment and behavior, 22(5), 555-590.
    Piaget, J., & Inhelder, B. (1956). The child’s conception of space. London, England: Routledge & Kegan Paul.
    Rooke, C. N., Koskela, L. J., & Tzortzopoulos, P. (2010). Achieving a lean wayfinding system in complex hospital environments: Design and through-life management. In Proceedings of the 18th Annual Conference of the International Group for Lean Construction (pp. 233-242). National Building Research Institute, Technion-Israel Institute of Technology. Haifa, Israel.
    Rooke, C. N., Tzortzopoulos, P., Koskela, L., & Rooke, J. (2009, April). Wayfinding: embedding knowledge in hospital environments. In HaCIRIC International Conference 2009 - Improving healthcare infrastructures through innovation, Brighton, England. (Unpublished)
    Sadalla, E.K. & Magel, S.G. (1980). The perception of transferred distance. Environment and Behavior, 12, 65-79.
    Schouela, D.A., Steinberg, L.M., Leveton, L.B. & Wapner, S. (1980). Development of the cognitive organization of an environment. Canadian Journal of Behavioral Science, 1980 (12), 1-16.
    Shawar, B. A., & Atwell, E. (2007). Chatbots: are they really useful? . Ldv forum, 22(1), 29-49.
    Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171 (3972), 701–703.
    Shneiderman, B. (1983). Direct Manipulation: A Step Beyond Programming Languages. Computer, 16, 57-69.
    Shumaker, S. A. & Reizenstein, J. E. (1984). Environmental factors affecting inpatient stress in acute care hospitals. In Environmental Stress, ed. G. W. Evans. New York, NY: Cambridge University Press, 179–223
    Siegel, A. W., & White, S. H. (1975). The development of spatial representations of large-scale environments. Advances in child development and behavior, 10, 9-55.
    Smutny, P., & Schreiberova, P. (2020). Chatbots for learning: A review of educational chatbots for the Facebook Messenger. Computers & Education, 151, 103862.
    Taylor, H. A., & Tversky, B. (1996). Perspective in spatial descriptions. Journal of memory and language, 35(3), 371-391.
    Thorndyke, P. W., & Hayes-Roth, B. (1982). Differences in spatial knowledge acquired from maps and navigation. Cognitive Psychology 14(4), 560-589.
    Vandenberg, S. G., & Kuse, A. R. (1978). Mental Rotations, a Group Test of Three-Dimensional Spatial Visualization. Perceptual and Motor Skills, 47(2), 599–604.
    Weiss, A., & Littman, D. R. (1994). Signal transduction by lymphocyte antigen receptors. Cell, 76(2), 263-274.
    網路參考文獻
    Pei-Yun Tu(2016年11 月 23 日)。從聊天機器人談「對話式使用者介面」。Vide 創誌。https://vide.hpx.tw/6101。(2021.12)
    智慧車站(2018年)。Taipei Smart City PMO 臺北智慧城市專案辦公室。https://smartcity.taipei/projdetail/138。(2021.1)

    QR CODE