簡易檢索 / 詳目顯示

研究生: 吳念鴻
Nien-Hung Wu
論文名稱: 使用最小旁瓣峰值 (MPS) 編碼發射進行高能聚焦超音波治療的超音波同步監測成像
Ultrasound Monitoring of Simultaneous High-Intensity Focused Ultrasound (HIFU) Therapy Using Minimum-Peak-Sidelobe Coded Excitation
指導教授: 沈哲州
Che-Chou Shen
口試委員: 李百祺
Pai-Chi Li
廖愛禾
Ai-Ho Liao
謝寶育
Bao-Yu Hsieh
沈哲州
Che-Chou Shen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 70
中文關鍵詞: HIFU治療超音波引導的HIFU治療HIFU干擾MPS編碼發射MPS解碼
外文關鍵詞: HIFU Therapy, US-gHIFU, HIFU Interference, MPS Code Excitation, MPS Decoding
相關次數: 點閱:739下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

高能聚焦超音波 (High-intensity focused ultrasound, HIFU) 的超音波監測成像具有低成本、非侵入性和即時成像等優點。然而,在超音波成像系統運行的過程中,HIFU的發射信號通常會產生嚴重的聲學干擾,這是因為HIFU的發射信號強度遠高於成像的信號強度。在過去的研究中,有提出像是雙極序列Golay編碼技術,該技術利用成本較低的超音波脈衝發射器發送傳輸訊號,以達到高訊號雜訊比的HIFU治療的監測成像,並將接收到的資料進行解碼,來還原影像的解析度,同時消除HIFU干擾。然而,Golay編碼的解碼需要仰賴兩次發射序列之間的互補性,因此容易產生運動假影 (Motion artifact)。在本研究中,我們提出了一種新型的單次發射雙極序列最小旁瓣峰值 (Minimum-Peak-Sidelobe, MPS) 編碼來同時消除HIFU干擾和避免運動假影產生。MPS發射序列的設計上要求正負位元的數目剛好相等且位元時長會是HIFU波形週期的整數倍,另外還需進行不同編碼的排列組合搜索以獲取最佳編碼序列,對應的回聲信號會先通過匹配濾波器進行第一階段解碼以消除HIFU干擾並提高影像的訊號雜訊比,之後再使用維納濾波器進行第二階段的脈衝壓縮以提升影像品質。我們分別進行了模擬和實驗比較脈衝反相相減 (Pulse-inversion subtraction, PIS)、Golay解碼和MPS解碼在超音波監測影像的性能。結果顯示MPS解碼可在組織運動的情況下成功消除HIFU干擾並維持成像品質。相比之下,uncode PIS和Golay解碼則會被未消除HIFU成分影響到最終的HIFU監控效果,綜上所述,單次發射的MPS編碼序列能夠在臨床上實現即時調整HIFU聚焦位置的治療應用。此外,儘管透過點阻濾波器也可以做到單次發射的HIFU干擾消除,但該技術的缺點是需要在HIFU干擾消除和斑點劣化之間進行權衡。


High-intensity focused ultrasound (HIFU) monitoring imaging using ultrasound (US) offers advantages such as low cost, non-invasiveness, and real-time imaging. However, during the operation of the US imaging system, the transmission signals of HIFU often generate significant acoustic interfer-ence due to their much higher intensity compared to the imaging signals. In previous studies, bipolar sequences such as Golay can be readily transmitted by US pulser hardware with the full driving voltage for high signal-to-noise ratio (SNR) monitoring of HIFU treatment. The subsequent decoding restores the image resolution of US monitoring and also removes acoustic interference from simultaneous HIFU transmission. However, Golay suffers from poten-tial motion artifacts since its decoding demands two complementary se-quences. In this study, we suggest a novel single-transmit bipolar sequence with minimum-peak-sidelobe (MPS) level to eliminate HIFU interference and avoid motion artifacts. The MPS code is designed with an equal number of positive and negative bits and the bit duration should be an integer multiple of the period of the HIFU waveform. In addition, we will search for different permutations in order to obtain the optimal encoding. The received imaging echo is firstly decoded by matched filtering to cancel HIFU interference and enhance image SNR. Then, Wiener filtering is applied as the second-stage pulse compression to improve the image quality of US monitoring. Simula-tions and experiments are performed to compare among uncode transmissions with pulse-inversion subtraction (PIS), Golay decoding, and MPS decoding for their performance in US monitoring images. The results show that MPS decoding successfully removes HIFU interference even in the presence of tissue motion. The image quality of uncode PIS and Golay decoding, on the other hand, is compromised by the uncancelled HIFU components which degrade their image quality. In summary, the MPS encoding sequence with a single-transmit enables real-time adjustment of HIFU focal position for clinical therapeutic applications. Though notch filtering also allows HIFU elimination using single-transmit waves, it suffers from the tradeoff between residual HIFU and speckle deterioration.

誌謝 I 摘要 III ABSTRACT V 目錄 VII 圖目錄 X 表目錄 XIII 一、 緒論 1 1.1 醫用超音波 1 1.1.1 超音波基礎原理 1 1.1.2 高能聚焦超音波治療 3 1.2 研究動機與目的 6 二、 HIFU干擾消除技術之文獻回顧 8 2.1 點阻濾波技術 8 2.2 脈衝反相相減技術 12 2.3 Golay解碼技術 14 三、 研究原理與方法 16 3.1 MPS解碼技術原理與研究方法 16 3.1.1 MPS編碼設計條件和搜尋的方法 16 3.1.2 MPS解碼中的匹配濾波器設計與應用 19 3.1.3 MPS解碼中的維納濾波器設計與應用 21 3.2 模擬環境設置 23 3.3 實驗環境設置 26 3.3.1 實驗儀器設置 26 3.3.2 組織運動實驗流程介紹 31 3.4 超音波影像品質評估指標 34 3.5 超音波信號處理流程 35 四、 研究結果 37 4.1 模擬結果 37 4.1.1 MPS編碼序列的位元長度比較 37 4.1.2 Field II模擬結果 39 4.2 實驗結果 43 4.2.1 無組織運動的實驗結果 43 4.2.2 組織運動的實驗結果 45 4.2.3 不同速度下影像對比度的比較分析 47 五、 討論、結論與未來工作 49 5.1 討論 49 5.1.1 MPS編碼的設計原理與應用成果的研究和分析 49 5.1.2 組織運動對於HIFU消除效果之探討比較 52 5.1.3 點阻濾波器與MPS解碼在單次發射實驗的比較 54 5.1.4 連續波HIFU發射模式下MPS解碼效能之評估 61 5.1.5 HIFU治療的Ex vivo同步監測成像實驗 63 5.2 結論與未來工作 65 參考文獻 67

[1] 沈哲州,「醫用超音波影像上課講義」,國立臺灣科技大學電機所,民國110年。
[2] Y. Wang, Z. B. Wang, and Y. H. Xu, “Efficacy, Efficiency, and Safety of Magnetic Resonance-Guided High-Intensity Focused Ultrasound for Ablation of Uterine Fibroids: Comparison with Ultrasound-Guided Method,” Korean J. Radiol., vol. 19, no. 4, pp. 724-732, 2018.
[3] H. Azzouz, and J. J. M. C. H. de la Rosette, “HIFU: Local Treatment of Prostate Cancer,” EAU-EBU Updat. Ser., vol. 4, no. 2, pp. 62-70, 2006.
[4] S. Vaezy, R. Martin, and L. Crum, “High intensity focused ultrasound: a method of hemostasis,” Echocardiography, vol. 18, no. 4, pp. 309-315, 2001.
[5] E. E. Konofagou, Y. S. Tung, J. Choi et al., “Ultrasound-induced blood-brain barrier opening,” Curr. Pharm. Biotechnol., vol. 13, no. 7, pp. 1332-1345, 2012.
[6] I. Rivens, A. Shaw, J. Civale et al., “Treatment monitoring and thermometry for therapeutic focused ultrasound,” Int. J. Hyperthermia, vol. 23, no. 2, pp. 121-139, 2007.
[7] K. Kuroda, “MR techniques for guiding high-intensity focused ultrasound (HIFU) treatments,” J. Magn. Reson. Imag., vol. 47, no. 2, pp. 316-331, 2018.
[8] M. A. Solovchuk, S. C. Hwang, H. Chang et al., “Temperature elevation by HIFU in ex vivo porcine muscle: MRI measurement and simulation study,” Med. Phys., vol. 41, no. 5, art. no. 052903, 2014.
[9] S. Vaezy, X. Shi, R. W. Martin et al., “Real-time visualization of high-intensity focused ultrasound treatment using ultrasound imaging,” Ultrasound Med. Biol., vol. 27, no. 1, pp. 33-42, 2001.
[10] D. Liu, and E. S. Ebbini, “Real-time 2-D temperature imaging using ultrasound,” IEEE Trans. Biomed. Eng., vol. 57, no. 1, pp. 12-16, 2010.
[11] R. M. Arthur, J. W. Trobaugh, W. L. Straube et al., “Temperature dependence of ultrasonic backscattered energy in motion-compensated images,” IEEE Trans. Ultrason., Ferroelect., Freq. Control, vol. 52, no. 10, pp. 1644-1652, 2005.
[12] P. D. Bevan, and M. D. Sherar, “B-scan ultrasound imaging of thermal coagulation in bovine liver: frequency shift attenuation mapping,” Ultrasound Med. Biol., vol. 27, no. 6, pp. 809-817, 2001.
[13] M. A. Abbass, J. K. Killin, N. Mahalingam et al., “Real-Time Spatiotemporal Control of High-Intensity Focused Ultrasound Thermal Ablation Using Echo Decorrelation Imaging in ex Vivo Bovine Liver,” Ultrasound Med. Biol., vol. 44, no. 1, pp. 199-213, 2018.
[14] M. A. Abbass, A. J. Garbo, N. Mahalingam et al., “Optimized Echo Decorrelation Imaging Feedback for Bulk Ultrasound Ablation Control,” IEEE Trans. Ultrason., Ferroelect., Freq. Control, vol. 65, no. 10, pp. 1743-1755, 2018.
[15] N. R. Owen, M. R. Bailey, J. Hossack et al., “A method to synchronize high-intensity, focused ultrasound with an arbitrary ultrasound imager,” IEEE Trans. Ultrason., Ferroelect., Freq. Control, vol. 53, no. 3, pp. 645-650, 2006.
[16] S. Pichardo, A. Gelet, L. Curiel et al., “New integrated imaging high intensity focused ultrasound probe for transrectal prostate cancer treatment,” Ultrasound Med. Biol., vol. 34, no. 7, pp. 1105-1116, 2008.
[17] J. S. Jeong, J. H. Chang, and K. K. Shung, “Ultrasound transducer and system for real-time simultaneous therapy and diagnosis for noninvasive surgery of prostate tissue,” IEEE Trans. Ultrason., Ferroelect., Freq. Control, vol. 56, no. 9, pp. 1913-1922, 2009.
[18] J. S. Jeong, J. M. Cannata, and K. K. Shung, “Adaptive HIFU noise cancellation for simultaneous therapy and imaging using an integrated HIFU/imaging transducer,” Phys. Med. Biol., vol. 55, no. 7, pp. 1889-1902, 2010.
[19] J. H. Song, Y. Yoo, T. K. Song et al., “Real-time monitoring of HIFU treatment using pulse inversion,” Phys. Med. Biol., vol. 58, no. 15, pp. 5333-5350, 2013.
[20] E.-J. Shin, B. Kang, and J. Chang, “Real-Time HIFU Treatment Monitoring Using Pulse Inversion Ultrasonic Imaging,” Appl. Sci., vol. 8, no. 11, art. no. 2219, 2018.
[21] C. C. Shen, R. C. Lin, and N. H. Wu, “Golay-Encoded Ultrasound Monitoring of Simultaneous High-Intensity Focused Ultrasound Treatment: A Phantom Study,” IEEE Trans. Ultrason., Ferroelect., Freq. Control, vol. 69, no. 4, pp. 1370-1381, 2022.
[22] M. N. Cohen, M. R. Fox, and J. M. Baden, “Minimum peak sidelobe pulse compression codes,” in Proc. IEEE Int. Radar Conf., 1990, pp. 633-638.
[23] C. J. Nunn, and G. E. Coxson, “Best-known autocorrelation peak sidelobe levels for binary codes of length 71 to 105,” IEEE Transactions on Aerospace and Electronic Systems, vol. 44, no. 1, pp. 392-395, 2008.
[24] C. H. Hu, R. Liu, Q. Zhou et al., “Coded excitation using biphase-coded pulse with mismatched filters for high-frequency ultrasound imaging,” Ultrasonics, vol. 44, no. 3, pp. 330-336, 2006.
[25] S. A. Jadwaa, “Wiener Filter based Medical Image De-noising,” International Journal of Science and Engineering Applications, vol. 7, pp. 318-323, 2018.
[26] J. A. Jensen, “Field: A Program for Simulating Ultrasound Systems,” Med. Biol. Eng. Comput., vol. 34, pp. 351-353, 1996.
[27] J. A. Jensen, and N. B. Svendsen, “Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers,” IEEE Trans. Ultrason., Ferroelect., Freq. Control, vol. 39, no. 2, pp. 262-267, 1992.
[28] P. C. Li, C. J. Cheng, and C. K. Yeh, “On velocity estimation using speckle decorrelation,” IEEE Trans. Ultrason., Ferroelect., Freq. Control, vol. 48, no. 4, pp. 1084-1091, 2001.
[29] J. Seo, N. Koizumi, M. Mitsuishi et al., “Ultrasound image based visual servoing for moving target ablation by high intensity focused ultrasound,” Int. J. Med. Robot. Comput. Assist. Surg., vol. 13, no. 4, e1793, 2017.

QR CODE