簡易檢索 / 詳目顯示

研究生: 楊秉儒
Bing-ru Yang
論文名稱: 模擬薄膜太陽能電池之次微米球表面織構以增進光擷取
Simulation of submicron-sphere textured surface for light trapping in thin-film solar cells
指導教授: 葉秉慧
Ping-Hui Yeh
口試委員: 蘇忠傑
Jung-Chieh Su
洪儒生
Lu-Sheng Hong
李志堅
Chih-Chien Lee
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 75
中文關鍵詞: 薄膜太陽能電池光線追跡模擬光擷取表面織構
外文關鍵詞: thin film solar cells, ray tracing, simulation, light trapping, textured
相關次數: 點閱:398下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來,許多人嘗試將奈米或微米球作為表面織構散射體以增加薄膜太陽能電池的轉換效率,然而散射體的尺寸及折射率等參數對散射效果的影響還未被充分瞭解。在本研究中,我們使用光線追跡 (Ray Tracing) 技術的軟體,模擬將二氧化矽次微米球散佈於透明導電層(transparent conductive oxide, TCO ),探討不同的情況下的光學特性,並針對非晶矽材料的太陽能電池作最佳設計。
首先討論不同的散射體直徑對於入射光由短波長300 nm 至長波長 1200nm,從霧度及等效光程長度比來探討散射效果的優劣,了解到適用於非晶矽太陽能電池的散射體直徑是含括0.15μm至0.25μm的分佈範圍,以同時散射所需波段。並發現過厚的TCO層會將擴散光的角度侷限於TCO與非晶矽的折射角內,降低光吸收率。而後探討在不同入射光波長的主動層吸收率,換算為外部量子效率,可以計算出在標準太陽光譜下的光電流及光電轉換效率。當非晶矽材料的太陽能電池其吸收截止波長為~700nm且主動層充分吸收短波長部分(<520nm),模擬出的結果為散射層可以讓光電流值與光電轉換效率都增加約10%。若截止波長更長,增益會更顯著。


Surface texturing with nano-/micro-meter spherical scatters has been used in recent years to improve conversion efficiency of silicon thin-film solar cells. Nevertheless the effects of different scatter parameters such as size and refractive index are not yet fully understood. In this research, we used ray-tracing technique to simulate the light scattering of a surface-textured transparent-conductive-oxide (TCO) glass using silica sub-micron spheres and studied the consequent optical properties under various situations. Then we optimized the scatter parameters for the amorphous silicon based solar cells.
We first investigated the ideal scatter sizes for efficient light scattering of wavelengths ranging from 300nm to 1200nm in terms of Haze value and absorption length ratio. The ideal scatter sizes for amorphous silicon based thin film solar cells ranged from 0.15μm to 0.25μm. And if the layer thickness of TCO is much larger than the scatter size, the diffused light angular distribution would be restricted to the refraction angle of the TCO/a-Si:H interface, leading to lower light absorption ratio. Furthermore, we calculated the light absorption ratio of the active layer for different incident wavelengths and thus obtained the external quantum efficiency, photocurrent and conversion efficiency when illuminated by standard one-sun AM1.5G solar light. Assuming the absorption edge wavelength is ~700nm and the active layer fully absorbs light of < 520nm wavelength, the addition of scatters would improve the conversion efficiency and the photocurrent by ~10%.

摘要I AbstractII 致謝III 目錄IV 表目錄VI 圖目錄VII 第一章緒論1 1.1研究背景及動機1 1.2文獻回顧4 1.3研究方向10 第二章原理介紹11 2.1太陽能電池原理11 2.1.1太陽光源介紹11 2.1.2太陽電池原理12 2.1.3量子效率16 2.2散射理論18 第三章光學模擬模型建構及模擬方法21 3.1FRED光學模擬軟體簡介21 3.2模擬模型設計27 3.2.1光源28 3.2.2樣品29 3.2.3偵測器33 3.3模擬的方法及流程34 第四章結果與討論39 4.1球型散射體尺寸之最佳化39 4.1.1散射光隨角度分佈之分析39 4.1.2霧度與等效光程長度比之分析43 4.2模擬與實驗結果之比較47 4.3加入非晶矽薄膜太陽能電池結構後之模擬分析50 4.3.1散射光隨角度分佈之分析50 4.3.2光吸收率對波長之分析56 4.3.3外部量子效率及光電轉換效率討論59 4.4散射層應用於太陽能電池設計62 4.4.1不同散射體材質62 4.4.2氮化鎵太陽能電池設計64 第五章結論與未來展望67 參考文獻70

[1]National Renewable Energy Laboratory, “Best Research-cell efficiencies,” website: http://www.nrel.gov/ncpv/

[2]O. Isabella, K. Jager, J. Krč., and M. Zeman, “Light scattering properties of surface-textured substrates for thin-film solar cells,” The annual workshop on semiconductor advances for future electronics and sensors, pp.476-479, 2008

[3]T. Oyama, M. Kambe, N. Taneda, and K. Masumo, “Requirements for TCO substrate in Si-based thin film solar cells – toward tandem,“ Mater. Res. Soc. Symp. Proc. Vol.1101, 2008.

[4]J. Krc, B. Lipovsek, M. Bokalic, A. Campa, T. Oyama, M. Kambe, T. Matsui, H. Sai, M. Kondo, and M. Topic, “Potential of thin-film silicon solar cells by using high haze TCO superstrates,” Thin Solid Films Vol.518, pp.3054–3058, 2010.

[5]M. Dimer, “Improved TCO for thin-film silicon solar cells,” Thin-Film Industry Forum, Berlin, 2010.

[6]ITRI Forum 2009, “Photovoltaic Research and Development at Photovoltaics Technology Center of ITRI,” 2009.

[7]T. H. Chang, P. H. Wu, S. H. Chen, C. H. Chan, C. C . Lee, C. C. Chen, and Y. K. Su, “Efficiency enhancement in GaAs solar cells using
self-assembled microspheres,” Opt. Express 6519 Vol.17, 2009.

[8]H. C. Chen, C. C. Lin, H. W. Wang, M. A. Tsai, P. C. Tseng, Y. L. Tsai, H. W. Han, Z. Y. Li, Y. A. Chang, H. C. Kuo, P.Yu, and S. H. Lin, “Efficiency Enhancement in Single-Junction InGaP Solar Cells by Using Self-Assembled Nanospheres,” IEEE PHOTONICS TECHNOLOGY LETTERS Vol.23 2011.

[9]R. Santbergen, R. Liang, and M. Zeman, “A-Si:H SOLAR CELLS WITH EMBEDDED SILVER NANOPARTICLES,” IEEE Photovoltaic Specialists Conference, pp.000748 – 000753, 2010 .

[10]S. Nunomura, A. Minowa, H. Sai, and M. Kondo, “Mie scattering enhanced near-infrared light response of thin-film silicon solar cells,” Appl. Phys. Lett. Vol.97, 2010.

[11]C. H. Chen, P. C. Juan, M. H. Liao , J. L. Tsai, and H. L. Hwang, “The effect of surface treatment on omni-directional efficiency of the silicon solar cells with micro-spherical texture/ITO stacks,” Solar Energy Materials & Solar Cells, Vol.95, pp.2545-2548, 2011.

[12]T. H. Chang, P. H. Wu, S. H. Chen, C. H. Chan, C. C. Lee, C. C. Chen, and Y. K. Su, “Efficiency enhancement in GaAs solar cells using self-assembled microspheres,” Opt. Express Vol.17, pp.6519-6524, 2009.

[13]M. Tao, W. Zhou, H. Yang, L. Chen, “Surface texturing by solution deposition for omni-directional antireflection,” Appl. Phys. Lett. Vol.91, pp.081118-1 – 081118-3, 2007.

[14]Y. Wang, L. Chen, H. Yang, Q. Guo, W. Zhou, M. Tao, “Spherical antireflection coatings by large-area convective assembly of monolayer silica microspheres,” Solar Energy Materials & Solar Cells Vol.93, pp.85-91, 2009.

[15]Y. Wang, R. Tummala, L. Chen, L. Qing Guo, W. Zhou, and M. Tao, “Solution-processed omnidirectional antireflection coatings on amorphous silicon solar cells,” JOURNAL OF APPLIED PHYSICS, 2009.

[16]S. J. Byun, S. Y. Byun, J. Lee, J. W. Kim, T. S. Lee, W. M. Kim, Y. K. Park and K. Cho, “An optical simulation algorithm based on ray tracing technique for light absorption in thin film solar cells,” Solar Energy Materials & Solar Cells Vol.95, pp.408-411, 2011.

[17]X. S. Hua, Y. J. Zhang, and H. W. Wang, “The effect of texture unit shape on silicon surface on the absorption properties,” Solar Energy Materials & Solar Cells Vol.94, pp.258-262, 2010.
[18]S. J. Byun, S. Y. Byun, J. Lee, J. W. Kim, T. S. Lee, K. Cho, D. Sheen, S. J. Tark, D. Kim, and W. M. Kim, “Analysis of light trapping effects in Si solar cells with a textured surface by ray tracing simulation,” Current Applied Physics, in press, 2011.

[19]R. Hulstrom, R. Bird, and C. Riordan, “SPECTRAL SOLAR IRRADIANCE DATA SETS FOR SELECTED TERRESTRIAL CONDITIONS,” Solar cell Vol.15, pp.365-391, 1985.

[20]黃惠良、曾百亨,太陽電池Solar cells,五南圖書出版公司, 2008。

[21] H. C. van de Hulst, “Light Scattering by Small Particles,” Dover, New York, 1981.

[22]S. H. Lin, Y. C. Chan, D. P. Webb, and Y. W. Lam, “Optical
characterization of hydrogenated amorphous silicon thin films deposited
at high rate,” Journal of ELECTRONIC MATERIALS, 1999.

[23]“Corning EAGLE XG AMLCD Glass Substrates Material
Information,” Corning Incorporated MIE 301, pp.1-3, 2006

[24] 洪儒生老師實驗室, “Asahi-U 玻璃與在康寧玻璃上作的散射層
作擴散穿透率對波長的比較,” 台灣科技大學化工所。

[25] U. Dagkaldiran, A. Gordijn, F. Finger, H. M. Yates, P. Evans, D. W.
heel, Z. Remes, and M. Vanecek, “Amorphous silicon solar cells made
with SnO2:F TCO films deposited by atmospheric pressure CVD,”
Materials Science and Engineering B 159-160, pp.6–9, 2009

QR CODE