簡易檢索 / 詳目顯示

研究生: 陳廷穎
Ting-Ying Chen
論文名稱: 應用於行動裝置之微型晶片天線設計
Design of Miniaturized Chip Antenna for Mobile Device
指導教授: 楊成發
Chang-Fa Yang
廖文照
Wen-Jiao Liao
口試委員: 陳士元
Shih-Yuan Chen
馬自莊
Tzyh-Ghuang Ma
邱振維
Edward Chiu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 100
中文關鍵詞: 微型化平面式倒F天線微型化FM天線多頻帶天線
外文關鍵詞: miniaturized PIFA antenna, miniaturized FM antenna, multu-band antenna
相關次數: 點閱:253下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

為了達到行動裝置輕薄短小的要求及因應多功能手機時代的來臨,本論文研發設計多款具有商用價值之微型化天線,其種類包括:無淨空區2.4GHz晶片天線、FM晶片天線設計與其匹配技巧、以及多頻段手機天線。
由於行動裝置環境日益複雜並且天線可利用面積越來越少,故傳統需要額外淨空區之天線已不利於使用,而一般不需淨空區之PIFA天線所佔面積亦較大。因此,本研究提出一款應用於2.4GHz ISM頻段之無淨空區微型晶片天線,有助於減少天線於行動裝置電路板上使用面積以及對電路板線路設計之影響,並且可具有良好的天線輻射效率。
另外,近來由於行動裝置內建FM頻段系統日益受到重視,所以微型化FM天線設計成為一項相當重要且具有高度挑戰的課題。針對此設計,本論文提出三款FM頻段微型晶片天線及其匹配方式,並加入低雜訊放大器,有助於提升行動裝置內建FM頻段系統之收訊效果及使用方便性。
至於在微型化多頻段手機天線方面,吾人設計出一款適用於GSM, Bluetooth, WiFi, WiMax及UWB等之多頻帶天線。本款天線設計採用多分支單極天線與環型天線組合來達成多頻段之目的,並巧妙地使用short pin來增加天線之共振頻率點與提升整體效能,且天線面積比起IFA, PIFA或其它微帶線型式之天線要小上許多,是一款相當精巧的微型化多頻段手機天線設計,以有效縮小手機電路板面積。


This thesis is to study three miniaturized antenna categories to achieve the various requirements consisted of compact, efficient, low cost and easy fabrication for mobile phone applications. These antenna designs include a miniature planar inverted-F antenna (PIFA), a compact multi-band antenna and three spiral FM antennas with their matching circuits for operating in different specific communication and multimedia bands. Besides, the liquid crystal polymer (LCP) is efficiently applied to manufacture process for both the proposed FM antennas and PIFA so that the antenna components can be easily protected and attached on circuit devices.
Owing to the space limitation of design receiving antenna for mobile phone, the traditional planar antennas required with additional empty space were not suitable to integrate in the circuit devices. Also, the general PIFAs with large antenna fabrication size are undesirable for commercial applications. Thus, a new miniaturized PIFA used in ISM band of 2.4GHz is presented to reduce the antenna occupied space and can be achieved a good radiation performance.
In the other hand, the miniaturization purpose of FM antenna is a very important challenge for antenna engineers since the FM broadcast system has attracted a lot of applications in recent years. In this thesis we investigate three miniature spiral FM antennas with their matching circuits to enhance the antenna radiation performance for utilizing in FM band. Also, a high efficiency low noise amplifier (LNA) can be designed to help proposed FM antennas to improve the receiving signal quality at some specific FM frequencies.
Finally, in order to meet the requirements for both of multimedia and mobile communication, a multi-band antenna is studied for applying with GSM, Bluetooth, WiFi, WiMAX and commercial UWB bands. This compact antenna mainly uses multi-branched monopole antenna and loop antenna to achieve the purpose with multi-band application. Moreover, the antenna resonant frequencies and radiation performance can be increased by using short pin design so that the antenna dimensions can be reduced more flexibly. Therefore, this multi-band antenna size has much smaller than other designs, such as IFAs, PIFAs and other microstrip antennas for mobile phone applications. Furthermore, the proposed antenna can be easily printed with general PCB to reduce the complexity of antenna fabrication.

摘 要 I ABSTRACT II 誌 謝 IV 目 錄 V 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 研究內容 1 1.3 章節概述 2 第二章 微型化平面式倒F天線 3 2.1 前言 3 2.2 平面式倒F天線發展歷史 3 2.3 平面式倒F天線分析概述 6 2.4 平面式倒F天線輻射體與短路腳分析 8 2.5 平面式倒F天線支撐物之不同介質影響 11 2.6 分析2.4GHz微型化平面式倒F天線 15 2.8 小結 26 第三章 微型化FM天線 27 3.1 前言 27 3.2 電氣小天線基本定義與特性 27 3.3 微型化FM天線原型設計(Case 1) 30 3.4 微型化FM天線不同匹配方式(Case 2) 35 3.5 可控式微型化FM天線設計(Case 3) 40 3.6 多層板微型化FM天線與低雜訊放大器之設計與整合 48 3.7 微型化FM天線接收性能比較 56 3.6 結語 58 第四章 多頻段手機天線設計 60 4.1 前言 60 4.2 設計原理與概念 60 4.3 設計分析 61 4.4 模擬與實測分析 63 4.5 小結 73 第五章 結論 74 5.1 總結 74 5.2 未來研究及發展方向 75 參考文獻 76 作者簡介 79 附錄A NXP BB181變容二極體規格 i 附錄B NEC 2SC5006電晶體規格 iii

[1] K. Ronold, C. Harrison, Jr., and D. Denton, Jr., "Transmission-line missile antennas," Antennas and Propagation, IEEE Transactions on [legacy, pre - 1988], vol. 8, pp. 88-90, 1960.
[2] K.-L. Wong, Planar Antennas for Wireless Communications. New York: John Wiley & Sons, 2003.
[3] R. Garg, P. Bharita, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook. Boston London: Artech House, 2000.
[4] K. Hirasawa and M. Haneishi, Analysis,Design and Measurement of Small and Low-Profile Antennas. Boston London: Artech House, 1992.
[5] K. Chang, RF and Microwave Wireless System. New York John Wiley & Sons, 2000.
[6] K. R. Boyle and L. P. Ligthart, "Radiating and balanced mode analysis of PIFA antennas," Antennas and Propagation, IEEE Transactions on, vol. 54, pp. 231-237, 2006.
[7] P. Vainikainen, J. Ollikainen, O. Kivekas, and K. Kelander, "Resonator-based analysis of the combination of mobile handset antenna and chassis," Antennas and Propagation, IEEE Transactions on, vol. 50, pp. 1433-1444, 2002.
[8] J. I. Moon, D. U. Sim, and S. O. Park, "Compact PIFA for 2.4/5 GHz dual ISM-band applications," Electronics Letters, vol. 40, pp. 844-846, 2004.
[9] Y. J. Cho, Y. S. Shin, and S. O. Park, "Internal PIFA for 2.4/5 GHz WLAN applications," Electronics Letters, vol. 42, pp. 8-10, 2006.
[10] Y. S. Shin and S. O. Park, "A novel PIFA for 2.4 and 5 GHz WLAN application," in Antennas and Propagation International Symposium, 2007 IEEE, 2007, pp. 645-648.
[11] C. A. Balanis, Antenna Theory, 3rd ed. New York: John Wiley & Sons, 2005.
[12] L. Duixian and B. Gaucher, "The inverted-F antenna height effects on bandwidth," in Antennas and Propagation Society International Symposium, 2005 IEEE, 2005, pp. 367-370 vol. 2A.
[13] C.-L. Hu, M.-C. Pan, S.-T. Lin, C.-F. Yang, K.-C. Cheng, S.-F. Wang, L.-S. Jang, and C.-L. Liao, "A fabrication method of small chip antenna," Taiwan patent #I241052, Oct. 1 2005~Dec. 28
[14] MSN Direct Homepage, "http://direct.msn.com/."
[15] R. D. S. Homepage, "http://www.radioandtelly.co.uk/rds.html."
[16] J. L. Volakis, Antenna Engineering Handbook, 4th ed. New York: McGraw-Hill, 2007.
[17] H. A. Wheeler, "Fundamental Limitations of Small Antennas," Proceedings of the IRE, vol. 35, pp. 1479-1484, 1947.
[18] L. J. Chu, "Physical Limitations of Omni-Directional Antennas," Journal of Applied Physics, vol. 19, pp. 1163-1175, 1948.
[19] H. Wheeler, "Small antennas," Antennas and Propagation, IEEE Transactions on [legacy, pre - 1988], vol. 23, pp. 462-469, 1975.
[20] R. C. Hansen, "Fundamental limitations in antennas," Proceedings of the IEEE, vol. 69, pp. 170-182, 1981.
[21] R. A. Burberry, "Electrically small antennas: a review," in Electrically Small Antennas, IEE Colloquium on, 1990, pp. 1/1-1/5.
[22] A. R. Lopez, "Fundamental hmrations of small antennas: validation of wheeler's formulas," Antennas and Propagation Magazine, IEEE, vol. 48, pp. 28-36, 2006.
[23] J. S. McLean, "A re-examination of the fundamental limits on the radiation Q of electrically small antennas," Antennas and Propagation, IEEE Transactions on, vol. 44, p. 672, 1996.
[24] H. D. Foltz and J. S. McLean, "Limits on the radiation Q of electrically small antennas restricted to oblong bounding regions," in Antennas and Propagation Society International Symposium, 1999. IEEE, 1999, pp. 2702-2705 vol.4.
[25] S. R. Best, "A discussion on the quality factor of impedance matched electrically small wire antennas," Antennas and Propagation, IEEE Transactions on, vol. 53, pp. 502-508, 2005.
[26] H. R. Stuart, S. R. Best, and A. D. Yaghjian, "Limitations in Relating Quality Factor to Bandwidth in a Double Resonance Small Antenna," Antennas and Wireless Propagation Letters, IEEE, vol. 6, pp. 460-463, 2007.
[27] G. Smith, "Efficiency of electrically small antennas combined with matching networks," Antennas and Propagation, IEEE Transactions on [legacy, pre - 1988], vol. 25, pp. 369-373, 1977.
[28] H. Wheeler, "The wide-band matching area for a small antenna," Antennas and Propagation, IEEE Transactions on [legacy, pre - 1988], vol. 31, pp. 364-367, 1983.
[29] G. Gonzalez, Microwave Transistor Amplifiers Analysis and Design, 2nd ed. New Jersey: Prentice Hall, 1997.
[30] D. M. Pozar, Microwave Engineering, 3rd ed. New York: John Wiley & Sons, 2005.
[31] E. Lee, P. S. Hall, and P. Gardner, "Compact wideband planar monopole antenna," Electronics Letters, vol. 35, pp. 2157-2158, 1999.
[32] M. J. Ammann and C. Zhi Ning, "Wideband monopole antennas for multi-band wireless systems," Antennas and Propagation Magazine, IEEE, vol. 45, pp. 146-150, 2003.
[33] L. Wang-Sang, K. Dong-Zo, L. Won-Gyu, and Y. Jong-Won, "Novel Multi-band Planar Monopole Antenna for Multi-band Wireless Systems," in Microwave Conference, 2006. 36th European, 2006, pp. 1418-1420.
[34] H.-W. Liu, C.-F. Yang, S.-T. Lin, and C.-L. Hu, "A planar chip antenna for UWB applications in lower band," in Antennas and Propagation International Symposium, 2007 IEEE, 2007, pp. 5147-5150.

QR CODE