簡易檢索 / 詳目顯示

研究生: 江泰槿
Tai-Chin Chiang
論文名稱: 廢膠粉共混泛用高分子綠色複材研究開發
Mechanical and Morphological Properties of Polymers and Regenerated Tire-Rubber chemical modification and physical blending
指導教授: 蘇舜恭
Shuenn-kung SU
口試委員: 王丞浩
Chen-Hao Wang
游進陽
Chin-Yang Yu
張浩哲
Haw-Jer Chang
鄭仲志
Chung-Chih Cheng
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 162
中文關鍵詞: 回收橡膠改性加工共混加工高分子共混物
外文關鍵詞: Binary polymeric blends, Recycled rubber, Maleic anhydride modified polypropylene, Compatibilizer
相關次數: 點閱:191下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 廢橡膠的處理是現今污染防治面臨的嚴重問題之一,國內之廢橡膠之回收處理技術主要可分為四大類,如原型利用、粉碎加工、熱裂解及輔助燃料,但,使用於工業上之再生橡膠,至多只能作為非補強性填料或改質劑,但利用微波、超音波等物理方法之新穎方法,因其設備投資成本較高且相對耗能,雖可取得較好的再生橡膠,實為目前節能減碳環境所難承受。 若以循環經濟之面相來探討,我們可以透過簡易之物化方法,透過分解、回收達到橡膠的再製造及再利用,來作為一種橡膠循環之原料的穩定來源。 經本研究發現,未改質RR顆粒具有穩定的交聯網狀結構,表面呈惰性,而PP是較為穩定的鏈狀結構,在沒有對二者表面改性的情況下,廢膠粉相與PP相兩相介面張力很大,難以粘附導致RR與PP二者介面之結合性不佳,因RR在加工過程中不再熔融使之趨於聚集從而形成孤立相以致材料的連續性變差,導致RR/PP複合材料之斷點延伸率不佳。 若要改變平衡,同時改善剛性與耐衝是困難的。為了改善RR與PP基體之間的介面相容性,有必要對PP及RR分別進行表面改性及減少結合的硫磺去除橡膠彈性。
    另外在橡膠回收過程中會產生碳黑等產物且製成仍然會少量產生後續的廢水問題,筆者利用天然可降解高分子材料之優良的吸附性能、天然、環保及可生物分解性等特點,進而尋找最適化配方/條件使其凝膠化、微球化、並具有可包覆性)以利作為綠色可降解廢水吸附材材料之基材材料。 進一步建立吸附材(Regenerated Tire Carbon Black; RCB)分散與改質技術,及化學改質/接枝法(表面形成-COOH官能團)、摻混乙烯基單體及改性聚乙二醇等為接枝樹酯,使改性/未改性後的RCB或CTS可均勻分散於複合於SA基材中,提高相容性、降低添加量及吸附能力,經由凝膠化形成綠色可降解廢水吸附材料。 並搭配FT-IR分析其化學結構與分子運動特性; 輔以WAXD分析其結晶結構、耐熱與熱學性質; SEM分析比表面積及表面型態。 測量各項吸附性能(吸收度、COD、導電度、pH),期滿足國內外業者需求並達到減少汙泥廢棄物二次汙染,未來可望將綠色可降解廢水吸附材料中吸附之汙染物回收再利用。


    The modified recycled rubber / PP thermoplastic elastomer was prepared by dynamic vulcanization and blending with the activated agent, accelerator, solubilizer, crosslinking agent, recycled rubber and PP. The effects of the amount of powder and pp and the crosslinking agent, the tensile properties, tensile strength, impact strength and the microstructure of the samples were observed by scanning electron microscopy using the amount of the accelerator, activator and solvent. It was found that the compatibilizer could effectively disperse the 120 mesh waste powder into the pp in the same manner, and obtain the rubber/pp thermoplastic elastomer tear section to be homogeneous, and discuss the best ratio of the powder and PP.
    On the other hand, we use the features, such as excellent adsorption performance, natural, environmentally friendly and biodegradable characteristics of natural biodegradable polymer materials, and then find the optimal formula/conditions gelled microspheres technology to be facilitated as a green biodegradable substrate material for the adsorbent waste materials. Furthermore, an adsorption material (Regenerated Tire Carbon Black; RCB) with dispersion and modification techniques was established, and chemical modification/grafting (-COOH surface functional groups). The modified/not RCB and CTS can be uniformly dispersed in the composite in SA substrate to improve compatibility, to reduce dosage and adsorption capacity, thus to form a green biodegradable waste material through an adsorbent material gelation. It will both help Taiwan's green industry to be more competitive and meet the demands of sustainable development.

    論文摘要 Ⅰ ABSTRACT III 誌謝 V 目錄 VI 圖表索引 X 第一章 前言 1 1.1 天然橡膠 1 1.2 合成橡膠 6 1.3 配合材料 9 1.3.1 硫化劑 9 1.3.2 促進劑 9 1.3.3 活化劑 9 1.3.4 老化防止劑與抗氧化劑 11 1.3.5 著色劑 11 1.3.6 非黑色填充劑 12 1.3.7 塑化劑或軟化劑 12 1.3.8 增量劑 12 1.4橡膠製品加工製造程序 13 1.5加工製造過程常使用之機器 15 第二章 研究背景 18 2.1我國橡膠產業之緣起 18 2.2輪胎產業衍生問題 20 2.3輪胎循環經濟 21 2.4廢輪胎再利用與處理 27 2.4.1 原型利用 29 2.4.2 輔助燃料 29 2.4.3 熱裂解 31 2.4.4 破碎與磨粉 32 2.4.5 再生橡膠 34 第三章 研究方法 37 3.1 WRP與泛用高分子合膠現況 39 3.1.1 WRP/PE共混物 40 3.1.2 WRP/PS共混物 40 3.1.3 WRP/其它高分子共混物 41 3.1.4 WRP/PP共混物 41 3.1.5 介面改質方法 45 第四章 廢膠粉共混泛用高分子綠色複材製備 49 4.1 製備材料 49 4.2 馬來酸酐接枝改質聚丙烯製備 50 4.3 脫硫劑製備 51 4.4 改質回收廢膠粉製備 51 4.5改性聚丙烯/改性膠料合膠製備 52 4.6熱壓成型 52 4.7拉伸性能 53 4.8衝擊強度 55 4.9掃描式電子顯微鏡 56 4.10傅立葉轉換紅外光譜 56 4.11熱重量分析 56 4.12動態黏彈性分析儀 57 第五章 結果與討論 59 5.1未改質PP摻混RR複材製備 59 5.1.1未改質PP摻混RR複材抗張強度與斷點延伸率 59 5.1.2未改質PP摻混RR複材之衝擊強度 62 5.1.3 未改質PP摻混RR複材之SEM分析 66 5.2 PP/RR複合材料最適化改質條件 68 5.2.1 改質/未改質PP70/RR30系列複合材料FTIR分析 68 5.2.2 改質/未改質PP70/RR30系列複合材料TGA分析 71 5.2.3 改質/未改質PP70/RR30系列複合材料DMA分析 73 5.2.4不同比例M-RR/PP系列複合材料之抗張與斷點延伸率 76 5.2.5 不同比例M-RR對/PP系列複合材料之衝擊強度 80 5.2.6 不同比例M-RR /PP系列複合材料之SEM分析 84 5.2.7 不同比例M-PP/RR系列複材之抗張與斷點延伸率 86 5.2.8 不同比例M-PP/RR系列複合材料之衝擊強度 90 5.2.9 不同比例M-PP /RR系列複合材料之SEM分析 93 5.2.10不同比例M-PP/M-RR系列複材之抗張與衝擊強度 95 5.2.11不同比例M-PP /M-RR系列複合材料之SEM分析 100 5.2.12最適化PP70/RR30系列複材之抗張與衝擊強度 102 5.2.13最適化PP70/RR30系列複合材料之SEM分析 105 第六章 結論 107 第七章 橡膠回收碳黑製備廢水處理吸附材 108 第八章 橡膠回收碳黑製備廢水處理吸附材製備 115 8.1 交聯殼聚糖微球的製備 115 8.2 回收橡膠碳黑(Regenerated Tire Carbon Black)改質 115 8.3 M-RCB /SA/CTS凝膠球製備 116 第九章 結果與討論 117 9.1 交聯殼聚糖微球(CTSM)之物理性質鑑定 117 9.2 交聯殼聚糖微球(CTSM)對甲基橙的吸附 121 9.3 回收碳黑改質材料M-RCB 之分散狀態與FTIR分析 127 9.4 M-RCB /SA/CTS凝膠球之吸附 129 第十章 結論 132 重要文獻參考資料 134

    1. Tilman, D., Balzer, C., Hill, J., Befort, B.L., Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. 108, 20260–20264 (2011).
    2. Sari, Y.W., Mulder, W.J., Sanders, J.P.M., Bruins, M.E., Towards plant protein refinery: review on protein extraction using alkali and potential enzymatic assistance. Biotechnol. J. 10, 1138–1157 (2015).
    3. Teekens, A.M., Bruins, M.E., van Kasteren, J.M.N., Hendriks, W.H., Sanders, J.P.M., Synergy between bio-based industry and feed industry through biorefinery. J. Sci. Food Agric. 96, 2603–2612 (2016).
    4. Zhu, Y., Xu, J., Li, Q., Mortimer, P.E., Investigation of rubber seed yield in Xishuangbanna and estimation of rubber seed oil-based biodiesel potential in Southeast Asia. Energy 69, 837–842 (2014).
    5. Dennis, M.S., Light, D.R., Rubber elongation factor from Hevea brasiliensis. Identification, characterization, and role in rubber biosynthesis. J. Biol. Chem. 264, 18608–18617 (1989).
    6. Frederick A., Rueggeberg DDS., From vulcanite to vinyl, a history of resins in restorative dentistry, The Journal of Prosthetic Dentistry, Volume 87, Issue 4, Pages 364-379 (2002).
    7. Martin, M.N., The latex of Hevea brasiliensis contains high levels of both chitinases and chitinases/lysozymes. Plant Physiol. 95, 469–476 (1991).
    8. Wititsuwannakul, R., Pasitkul, P., Jewtragoon, P., Wititsuwannakul, D., Hevea latex lectin binding protein in C-serum as an anti-latex coagulating factor and its role in a proposed new model for latex coagulation. Phytochemistry 69, 656–662 (2008).
    9. Wong, P.-F., Abubakar, S., Post-germination changes in Hevea brasiliensis seeds proteome. Plant Sci. 169, 303–311 (2005).
    10. Widyarani, Stef C. W. Coulen, Johan P. M. Sanders, Marieke E. Bruins, Valorisation of Proteins from Rubber Tree, Waste and Biomass Valorization, Volume 8, Issue 4, pp 1027–1041 (2017).
    11. Latest Rubber Statistical Bulletin/Rubber Industry Report Available From IRSG, www.rubberstudy.com (2011).
    12. You-Ping Wu, Yi-Qing Wang, Hui-Feng Zhang, Yi-Zhong Wang, Ding-ShengY u, Li-Qun Zhanga, JunYang, Rubber–pristine clay nanocomposites prepared by co-coagulating rubber latex and clay aqueous suspension, Composites Science and Technology, Volume 65, Issues 7–8, Pages 1195-1202 (2005).
    13. You‐Ping Wu, Li‐Qun Zhang, Yi‐Qing Wang, Yi Liang, Ding‐Sheng Yu, Structure of carboxylated acrylonitrile‐butadiene rubber (CNBR)–clay nanocomposites by co‐coagulating rubber latex and clay aqueous suspension, Journal of Applied Polymer Science, Volume82, Issue11, pp 2842-2848 (2001).
    14. Charongpun Musikavong, Shabbir H. Gheewala, Assessing ecological footprints of products from the rubber industry and palm oil mills in Thailand, Journal of Cleaner Production, Volume 142, Part 3 , Pages 1148-1157 (2017).
    15. Charongpun Musikavong, Shabbir H. Gheewala, Water scarcity footprint of products from cooperative and large rubber sheet factories in southern Thailand, Journal of Cleaner Production, 134, pp. 574-582 (2016).
    16. Meral Yikmis and Alexander Steinbüchel, Applied and Environmental Microbiology, Volume 84, Issue 15 (2018).
    17. A.Ibrahim, M.Dahlan, Thermoplastic natural rubber blends, Progress in Polymer Science, Volume 23, Issue 4, Pages 665-706 (1998).
    18. K. Cornish, Similarities and differences in rubber biochemistry among plant species, Phytochem., 57, pp. 1123-1134 (2001).
    19. B. Belcher, et al., Rattan, rubber, or oil palm: Cultural and financial considerations for farmers in Kalimantan, Econ. Bot., 58, pp. S77-S87 (2004).
    20. S.C. Espy, et al., Initiator-independent and initiator-dependent rubber biosynthesis in Ficus elastic, Arch. Biochem. Biophys., 448, pp. 13-22 (2006).
    21. P.J. van Dijk, Ecological and evolutionary opportunities of apomixis: insights from Taraxacum and Chondrilla. Philos, Trans. R. Soc. London. Ser. B, 358, pp. 1113-1120 (2003).
    22. F. Bouvier, et al., Biogenesis, molecular regulation and function of plant isoprenoids, Prog. Lipid Res., 44, pp. 357-429 (2005).
    23. M.S. Dennis, D.R. Light, Rubber elongation factor from Hevea brasiliensis: identification, characterization and role in rubber biosynthesis, J. Biol. Chem., 264, pp. 18608-18617 (1989).
    24. P. Priya, et al., Molecular cloning and characterization of the rubber elongation factor gene and its promoter sequence from rubber tree (Hevea brasiliensis): a gene involved in rubber biosynthesis, Plant Sci., 171, pp. 470-480 (2006).
    25. D.J. Siler, K. Cornish, A protein from Ficus elastica rubber particles is related to proteins from Hevea brasiliensis and Parthenium argentatum, Phytochem., 32, pp. 1097-1102 (1993).
    26. K. Cornish, J.L. Brichta, Some rheological properties of latex from Parthenium argentatum Gray compared with latex from Hevea brasiliensis and Ficus elastic, J. Polym. Environ., 10, pp. 13-18 (2002).
    27. M.S. Dennis, D.R. Light, Rubber elongation factor from Hevea brasiliensis: Identification, characterization, and role in rubber biosynthesis, J. Biol. Chem., 264, pp. 18608-18617 (1989).
    28. T. Inoue, H. Osatake, A new drying method of biological specimens for scanning electron microscopy: t-butyl alcohol freeze drying method, Arch. Histol. Cytol., 51, pp. 53-59 (1988).
    29. H. Kang, M.Y. Kang, K.H. Han, Identification of natural rubber and characterization of rubber biosynthetic activity in fig tree (Ficus carica), Plant Physiol., 123, pp. 1133-1142 (2000).
    30. S.K. Oh, K.H. Han, S.B. Ryu, H. Kang, Molecular cloning, expression, and functional analysis of a cis-prenyltransferase from Arabidopsis thaliana, J. Biol. Chem., 275, pp. 18482-18488 (2000).
    31. S.K. Oh, H. Kang, D.H. Shin, J. Yang, K.S. Chow, H.Y. Yeang, B. Wagner, H. Breiteneder, K.H. Han, Isolation, characterization, and functional analysis of a novel cDNA clone encoding a small rubber particle protein from Hevea brasiliensis, J. Biol. Chem., 274, pp. 17132-17138 (1999).
    32. D.J. Siler, K. Cornish, Identification of Parthenium argentatum rubber particle proteins immunoprecipitated by an antibody that specifically inhibits rubber transferase activity, Phytochemistry, 36, pp. 623-627 (1994).
    33. A.B. Carey, K. Cornish, P.J. Schrank, B. Ward, R.A. Simon, Cross reactivity of alternate plant sources of latex in subjects with systemic IgE mediated sensitivity to Hevea brasiliensis latex, Annals of Allergy, Asthma and Immunology, 74, pp. 317-320 (1995).
    34. D.J. Siler, K. Cornish, Hypoallergenicity of guayule rubber particle proteins compared to Hevea latex proteins, Industrial Crops and Products, 2, pp. 307-313 (1994).
    35. V.J. Tomazic, T.J. Withrow, B.R. Fisher, S.F. Dillard, Latex-associated allergies and anaphylactic reactions, Clinical Immunology and Immunopathology, 64, pp. 89-97(1992).
    36. J. Anu Mary, G. Benny, K.N. Madhusoodanan, A. Rosamma, The current status of sulphur vulcanization and devulcanization chemistry: devulcanization, Rubber Sci., 29, pp. 62-100 (2016).
    37. V. Chandran, T. Manvel Raj, T. Lakshmanan, M. Senthil Kumar, Evaluation of performance of natural rubber composites with different sizes of waste tyre rubber (WTR) and precipitated Silica on C-M-M, Arab. J. Sci. Eng., 40, pp. 1187-1196 (2015).
    38. P.S. Dekic, D.I. Temeljkovski, B. Rancic, S. Nusev, Application of recycled rubber powder (RRP) in NR/SBR compounds, J. Sci. Ind. Res., 71, pp. 295-298 (2012).
    39. BRIDGESTONE, https://www.bridgestone.co.jp/
    40. Y. Fang, M. Zhan, Y. Wang, The status of recycling of waste rubber, Mater. Des., 22, pp. 123-128 (2001).
    41. K. Formela, M. Cysewska, J. Haponiuk, The influence of screw configuration and screw speed of co-rotating twin screw extruder on the properties of products obtained by thermomechanical reclaiming of ground tire rubber, Polimery, 59, pp. 170-177 (2014).
    42. P.S. Garcia, F.D.B. de Sousa, J.A. de Lima, S.A. Cruz, C.H. Scuracchio, Devulcanization of ground tire rubber: physical and chemical changes after different microwave exposure times, Express Polym. Lett., 9, pp. 1015-1026 (2015).
    43. Z.H. Tang, C.F. Zhang, Q.Y. Wei, P.J. Weng, B.C. Guo, Remarkably improving performance of carbon black-filled rubber composites by incorporating MoS2 nanoplatelets, Compos. Sci. Technol., 132, pp. 93-100 (2016).
    44. J. Meier, J. Fritzsche, L. Guy, Y. Bomal, M. Klüppel, Relaxation dynamics of hydration water at activated silica interfaces in high-performance elastomer composites, Macromolecules, 42, pp. 2127-2134 (2009).
    45. Y. Li, B. Han, L. Liu, F. Zhang, S. Wen, Surface modification of silica by two-step method and properties of solution styrene butadiene rubber (SSBR) nanocomposites filled with modified silica, Compos. Sci. Technol., 88, pp. 69-75 (2013).
    46. F. Yatsuyanagi, N. Suzuki, M. Ito, H. Kaidou, Effects of secondary structure of fillers on the mechanical properties of silica filled rubber systems, Polymers, 42, pp. 9523-9529 (2001).
    47. Y. Ding, Z.Z. Yu, J.P. Zheng, Rational design of adhesion promoter for organic/inorganic composites, Compos. Sci. Technol., 147, pp. 1-7 (2017).
    48. International Rubber Study Group, http://www.rubberstudy.com
    49. IMF - Global Rubber Markets, https://globalrubbermarkets.com
    50. 台灣橡膠暨彈性體工業同業公會, www.tria.org.tw
    51. 產業價值鏈資訊平台, ic.tpex.org.tw
    52. 2016 石化產業年鑑 - ITIS智網
    53. 2017 石化產業年鑑 - ITIS智網
    54. 經濟部PIPO電子季報(第3期) 2012
    55. 公路總局-統計年報及速報, www.thb.gov.tw
    56. 機動車輛登記數, 中華民國內政部警政署, https://www.npa.gov.tw
    57. 機動車輛登記數及密度, 環境資源資料庫, 環保署, erdb.epa.gov.tw
    58. S. Bhatt, P.W. Gething, O.J. Brady, J.P. Messina, A.W. Farlow, C.L. Moyes, et al., The global distribution and burden of dengue, Nature, 496, pp. 504-507 (2013).
    59. J.R. Egger, E.E. Ooi, D.W. Kelly, M.E. Woolhouse, C.R. Davies, P.G. Coleman, Reconstructing historical changes in the force of infection of dengue fever in Singapore: implications for surveillance and control, Bull. World Health Organ., 86, pp. 187-196 (2008).
    60. A. Itrat, A. Khan, S. Javaid, M. Kamal, H. Khan, S. Javed, S. Kalia, A.H. Khan, M.I. Sethi, I. Jehan Knowledge, awareness and practices regarding dengue fever among the adult population of dengue hit cosmopolitan, PLoS One, 3, pp. 1-6 (2008).
    61. Bocken, N.M.P., Ritala, P. & Huotari, P., The circular economy: exploring the introduction of the concept among S&P 500 firms. J. Ind. Ecol., 21(3), pp.487–490 (2017).
    62. Blomsma, F. & Brennan, G., The emergence of circular economy: a new framing around prolonging resource productivity. J. Ind. Ecol., 21(3), pp.603–614 (2017).
    63. B. Campbell, et al., Crunch the can or throw the bottle? Effect of “bottle deposit laws” and municipal recycling programs, Resour. Conserv. Recycl., 106, pp. 98-109 (2016).
    64. Y. Liu, Z. Fan, H. Ma, Y. Tan, J. Qiao, Application of nano powdered rubber in friction materials, Wear, 261, pp. 225-229 (2006).
    65. M.W. Shin, Y.H. Kim, H. Jang, Effect of the abrasive size on the friction effectiveness and instability of brake friction materials: a case study with zircon, Tribol. Lett., 55, pp. 371-379 (2014).
    66. S.M. Lee, M.W. Shin, H. Jang, Friction-induced intermittent motion affected by surface roughness of brake friction materials, Wear, 308, pp. 29-34 (2013).
    67. S. Ramarad, M. Khalid, C. Ratnam, A.L. Chuah, W. Rashmi, Waste tire rubber in polymer blends: a review on the evolution, properties and future, Prog. Mater. Sci., 72, pp. 100-140 (2015).
    68. 應回收廢棄物品回收清除處理補貼費率, 1070221環署基字第1070014700號公告
    69. A. Hüseyin, I. Cumali, Analysis of combustion, performance and emission characteristics of a diesel engine using low sulfur tire fuel, Fuel, 143, pp. 373-382 (2015).
    70. B. Lah, D. Klinar, B. Likozar, Pyrolysis of natural, butadiene, styrene-butadiene rubber and tyre components: modeling kinetics and transport phenomena at different heating rates and formulations, Chem. Eng. Sci., 8, pp. 1-13 (2013).
    71. G. Lopez, M. Olazar, M. Amutio, R. Aguado, J. Bilbao, Influence of tire formulation on the products of continuous pyrolysis in a conical spouted bed reactor, Energy Fuels, 23 (5), pp. 23-31 (2009).
    72. J.D. Martinez, N. Puy, R. Murillo, T. Garcia, M.V. Navarro, A.M. Mastral, Waste tyre pyrolysis: a review, Renew. Sustain. Energy, 23, pp. 179-213 (2013).
    73. F. Carrasco, N. Bredin, Y. Gningue, M. Heitz, Environmental impact of the energy recovery of scrap tires in a cement kiln, Environ. Technol., 19, pp. 461-474 (1998).
    74. D.M. DeMarini, P.M. Lemieux, J.V. Ryan, L.R. Brooks, R.W. Williams, Mutagenicity and chemical analysis of emissions from the open burning of scrap rubber tyres, Environ. Sci. Technol., 28, pp. 136-141 (1994).
    75. F. Heras, D. Jimenez-Cordero, M.A. Gilarranz, N. Alonso-Morales, J.J. Rodriguez, Activation of waste tire char by cyclic liquid-phase oxidation, Fuel Process. Technol., 127, pp. 157-16 (2014).
    76. A. M. Pearson, R. B. Young, Proteins of the Thin Filament: Actin, Tropomyosin, and Troponin, Muscle and Meat Biochemistry, 1Pages 98-130, (1989).
    77. W. Yang, Q. Dong, S. Liu, H. Xie, L. Liu, J. Li, Recycling and disposal methods for polyurethane foam wastes, Procedia Environ. Sci., 16, pp. 167-175 (2012).
    78. G. Behrendt, B.W. Naber, The chemical recycling of polyurethanes (review), J. Univ. Chem. Technol. Metall., 44, pp. 3-23(2009).
    79. B. Adhikari, D. De, S. Maiti, Reclamation and recycling of waste rubber, Prog. Polym. Sci., 25, pp. 909-948 (2000).
    80. S. Bandyopadhyay, S. Agrawal, R. Ameta, S. Dasgupta, R. Mukhopadhyay, A. Deuri, S.C. Ameta, R. Ameta, An overview of rubber recycling, Prog. Rubber Plast. Re., 24, p. 73 (2008).
    81. T. Chaubey, H. Arastoopour, Studying the pulverization mechanism of rubber with a modified design of the solid-state shear extrusion process, J. Appl. Polym. Sci., 119, pp. 1075-1083 (2011).
    82. R. Diaz, G. Colomines, E. Peuvrel-Disdier, R. Deterre, Thermo-mechanical recycling of rubber: relationship between material properties and specific mechanical energy, J. Mater. Process. Tech., 252, pp. 454-468 (2018).
    83. Y. Fang, M. Zhan, Y. Wang, The status of recycling of waste rubber, Mater. Design., 22, pp. 123-128 (2001).
    84. G.K. Jana, R.N. Mahaling, T. Rath, A. Kozlowska, M. Kozlowski, C.K. Das Mechano-chemical recycling of sulfur cured natural rubber, Polimery, 52, pp. 131-136 (2007).
    85. S.H. Lee, S.H. Hwang, M. Kontopoulou, V. Sridhar, Z.X. Zhang, D. Xu, J.K. Kim, The effect of physical treatments of waste rubber powder on the mechanical properties of the revulcanizate, J. Appl. Polym. Sci., 112, pp. 3048-3056 (2009).
    86. S. Rooj, G.C. Basak, P.K. Maji, A.K. Bhowmick, New route for devulcanization of natural rubber and the properties of devulcanized rubber, J. Polym. Environ., 19, pp. 382-390 (2011).
    87. J.-Y. Xu, Mei-Shen, X.-Q. Wang, C.-H. Chen, Z.-X. Xin, The effect of reclaim softener on properties of reclaimed rubber, J. Macromol. Sci. B, 53, pp. 1182-1192 (2014).
    88. C.E. Pierce, M.C. Blackwell, Potential of scrap tire rubber as lightweight aggregate in flowable fill, Waste Management, 23 (3), pp. 197-208 (2003).
    89. N. Segre, I. Joekes, Use of tire rubber particles as addition to cement paste, Cement and Concrete Research, 30 (9), pp. 1421-1425 (2000).
    90. D.M. Smith, A.R. Chughtai, The surface structure and reactivity of black carbon, Colloid Surf A, 105, pp. 47-77 (1995).
    91. R. Sonnier, et al., Compatibilizing thermoplastic/ground tyre rubber powder blends: Efficiency and limits, Polymer Testing, Volume 27, Issue 7, October, Pages 901-907 (2008).
    92. G.M. Trofimova, D.D. Novikov, L.V. Kompaniets, T.I. Medintseva, Y.B. Yan, E.V. Prut, Effect of the method of tire grinding on the rubber crumb structure, Polym. Sci. Serie A, 442 (7), pp. 825-830 (2000).
    93. Z. Mou, et al., Evaluating the biochemical methane potential (BMP) of low-organic waste at Danish landfills, Waste Management, Volume 34, Issue 11, November, Pages 2251-2259 (2014).
    94. J.P.Y. Jokela, V.A. Vavilin, J.A. Rintala, Hydrolysis rates, methane production and nitrogen solubilisation of grey waste components during anaerobic degradation, Bioresource Technol., 96, pp. 501-508 (2005).
    95. S. Pommier, A.M. Llamas, X. Lefebvre, Analysis of the outcome of shredding pretreatment on the anaerobic biodegradability of paper and cardboard materials, Bioresource Technol., 101, pp. 463-468 (2010).
    96. Medhat M. Hassan, Synergistic effect of montmorillonite–clay and gamma irradiation on the characterizations of waste polyamide copolymer and reclaimed rubber powder nanocomposites, Composites Part B: Engineering, Volume 79, 15 September, Pages 28-34 (2015).
    97. M. Zanetti, G. Camino, R. Thomann, R. Mulhaupt, Polymer, 42, p. 4501 (2001).
    98. V.V. Rajan, W.K. Dierkes, R. Joseph, J.W.M. Noordermeer
    99. Science and technology of rubber reclamation with special attention to NR-based waste latex products, Prog Polym Sci, 31, pp. 811-834 (2006).
    100. N. Roche, M.N. Ichchou, M. Salvia, A. Chettah, Dynamic damping properties of thermoplastic elastomers based on EVA and recycled ground tire rubber, J Elastomers Plast, 43, pp. 317-340 (2011).
    101. J.-W. Jang, T.-S. Yoo, J.-H. Oh, I. Iwasaki, Discarded tire recycling practices in the United States, Japan and Korea, Resour Conserv Recycl, 22, pp. 1-14 (1998).
    102. P. M. Stefani, D. Garcia, J. Lopez, A. Jimenez, Thermogravimetric analysis of composites obtained from sintering of rice husk-scrap tire mixtures, J Therm Anal Calorim, 81, pp. 315-320 (2005).
    103. S. Li, J. Lamminmäki, K. Hanhi, Effect of ground rubber powder and devulcanizates on the properties of natural rubber compounds, J Appl Polym Sci, 97, pp. 208-217 (2005).
    104. S. Rooj, G.C. Basak, P.K. Maji, A.K. Bhowmic, New route for devulcanization of natural rubber and the properties of devulcanized rubber, J Polym Environ, 19, pp. 382-390 (2011).
    105. J. Shi, K. Jiang, D. Ren, H. Zou, Y. Wang, X. Lv, et al., Structure and performance of reclaimed rubber obtained by different methods, J Appl Polym Sci, 129, pp. 999-1007 (2013).
    106. R. Vukanti, M. Crissman, L.G. Leff, A.A. Leff, Bacterial communities of tyre monofill sites: growth on tyre shreds and leachate, J Appl Microbiol, 106, pp. 1957-1966 (2009).
    107. B. Maridass, B.R. Gupta, Performance optimization of a counter rotating twin screw extruder for recycling natural rubber vulcanizates using response surface methodology, Polym Test, 23 (4), pp. 377-385 (2004).
    108. Liang, J.; Wang, Y.; Huang, Y.; Ma, Y.; Liu, Z.; Cai, J.; Zhang, C.; Gao, H.; Chen, Y. Carbon, 47, (3), 922-925 (2009).
    109. D'Orazio, L.; Mancarella, C.; Martuscelli, E.; Polato, F. Polymer, 32, (7), 1186-1194 (1991).
    110. Greco, R.; Mancarella, C.; Martuscelli, E.; Ragosta, G.; Jinghua, Y. Polymer, 28, (11), 1929-1936 (1987).
    111. Pukanszky, B.; Tudos, E.; Kallo, A.; Bodor, G. Polymer, 30, (8), 1407-1413 (1989).
    112. Zebarjad, S. M.; Bagheri, R.; Lazzeri, A. Plastics, Rubber and Composites, 30, (8), 370-376 (2013).
    113. Premphet, K.; Horanont, P. Polymer, 41, (26), 9283-9290 (2000).
    114. 陳宜清、柳孟巨集,QUAL2K 模式應用於河川水質管理-以筏子溪為例,環境與管理研究,第八卷,第二期 (2008)。
    115. 行政院環境保護署環境監測及資訊處,全國河川97 年1 月份水質監測結果摘要說明(2008)。
    116. 經濟部水利署,河川生態工法實務手冊,中國文化大學 (2005)。
    117. 經濟部水利署,河川生態工法及其應用-總報告,中國文化大學 (2005)。
    118. 行政院環境保護署,中華民國環境保護統計年報 (2013)。
    119. 經濟部工業局,工業減廢技術手冊4-染料工業,工業污染防治技術服務團(1995)。
    120. 經濟部工業局,染整業污染防治與環境管理實用手冊,工業污染防治技術服務團(2002)
    121. 高肇藩,水污染防治,中國土木水利工程學會 (1994)。
    122. K. Ravi, N. V. Majeti, A review of chitin and chitosan applications, React. Funct. Polym., 46, 1-27(2000).
    123. H. Y. Li, M. S. Chiou, Equilibrium and kinetic modeling of adsorption of Reactive dye on cross-linked chitosan beads, J. Hazard. Mater., 93,233-248(2002).
    124. G. McKay, Y. C. Wong, Y. S. Szeto, W. H. Cheung, Adsorption of acid dyes on chitosan-equilibrium isotherm analyses, Water Res., 39, 695-704(2004).
    125. R. Ganesh, G. D. Boardman, D. Michelsen, Fate of azo dyes insludges, Water Res., 28, 1367-1377(1994).
    126. S. H. Lin, C. M. Lin, Treatment of textile waste effluents by ozonation and chemical coagulation, Water Res., 27, 1743-1748(1993).
    127. M. S.Chiou , P. Y. Ho, H. Y. Li, Adsorption of anionic dyes in acid solutions using chemically cross-linked chitosan beads,” Dyes pigm., 60, 69-84(2004).
    128. G. Tchobanoglous, F. L. Burton, H. D. Stense, Wastewater Engineering: Treatment and Reuse, 4/e, McGraw-Hill (2002).
    129. T. J. Casey, Unit treatment processes in water and wastewater engineering, Wiley (1997).
    130. S. Judd, Process science and engineering for water and wastewater treatment, London IWA Publ (2002).
    131. 歐陽嶠暉,廢水處理廠操作管理-活性汙泥系統,工業污染防治技術叢書-廢水好氧處理論著彙編(上),經濟部工業局 (2000)。
    132. 李俊德,傳統式擴散曝氣活性汙泥處理法簡介,工業污染防治技術叢書-廢水好氧處理論著彙編(上),經濟部工業局 (2000)。
    133. 林季螢、牟敦剛,活性汙泥生物活性特性探討,工業污染防治技術叢書-廢水好氧處理論著彙編(下),經濟部工業局 (2000)。
    134. 陳鴻濤,汙泥減量設備技術及選用實例,台灣環保產業雙月刊第20期 (2003)。
    135. August A.D., K.H., Zhang D.J,. et al.AlginAPe hydrogels as biomAPerials,” Macromolecular bioscience, 2006. 6(8), pp. 623-633 (2006).
    136. WU Qiu-hui, W.H., WANG Ling-chong, JI Jing, CHEN Shi-yong, “Review on preparation and application of Alginate microspheres as drug carrier,” China Journal of Traditional Chinese Medicine and Pharmacy, 8, pp.1791-1794 2011..
    137. Li-xia J., “Drug delivery materials in the field of medicine and its application,” Journal of Clinical RehabilitAPive Tissue Engineering Researc, 25, pp. 4699-4702(2011).
    138. Gombotz W. R., W.S., “Protein release from alginate matrices,” Advanced Drug Delivery Reviews, 31: pp.267-285 (1998).
    139. Liang H.F., H.M.H., Ho R. M., et al., “Novel Method Using a Temperature-Sensitive Polymer (Methylcellulose) to Thermally Gel Aqueous Alginate as a pH-Sensitive Hydrogel,” Biomacromolecules, 5(5), pp. 1917-1925 (2004).
    140. Fernaderz M E, A.J.A., Mendoza A D, “Experimental and theoretical study of palygorskite clays,” Journal of Material Science, 34(6), pp.5243-5255(1999).
    141. Garcia-Ochoa F, Santos VE and Casas JA. Xanthan gum production under several operational conditions:molecular structure and rheological properties. Enzyme Microbial Technology 2000;26:282-291
    142. Katzbauer B. Properties and applications of xanthan gum. Polymer Degradation Stability 1998;59:81-84
    143. Lopez MJ and Ramos-Cormenzana A. Xanthan production from olive- mill wastewaters. International Biodeterioration and Biodegradation 1996;38: 263-270
    144. Chandrasekaran R and Radha A. Molecular modeling of xanthan: galactomannan interactions. Carbohydrate Polymers 1997;32:201-208.
    145. 徐祖信,陳旋,李霞.聚合氯化鋁及其在工業廢水處理中的應用與展望,上海環境科學,22(5):353-357 (2003)。
    146. 王衛平,馮建軍.食品品質改良劑:親水膠體的性質及應用,北京:中國食品發酵工業研究所, 21(3):62-637 (1995)。
    147. Gregorio Crini.Recent developmens in polysaccharide—based materials used as adsorbents in wastewater treatment Progress in Polymer Science, 30, 38-70 (2005).
    148. Ebbesen T W ,Ajayan P M. Large-scale synthesis of carbon nanotubes, Nature, 1992,358(6383):220-222.
    149. KERECM,BOGATAJM,eta1.Permeability of pig urinary bladder wall:the efect of chitosan and the role of calcium, European Journal of Pharmaceutical Sciences,2005,25(1):113-121.
    150. 林永波,邢佳,施雲芬,等.高分子凝膠球去除廢水中重金屬離子的研究,環境保護科學,4(2):21-24 (2008)。
    151. C. H. Weng, Y. F. Pan, Adsorption characteristics of methylene blue from aqueous solution by sludge ash, Colloids Surfaces A:Physicochem. Eng. Aspects, 274, 1-3,154-162 (2006).
    152. B. H. Hameed, A. T. M. Din, A. L. Ahmad, Adsorption of methylene blue onto bamboo-based activated carbon: Kinetics and equilibrium studies, J. Hazard. Mater., 141, 3, 819-825(2007).
    153. Y. Bulut, H. Aydin, A kinetics and thermodynamics study of methylene blue adsorption on wheat shells, Desalination, 194, 1-3, 259-267(2006).
    154. D. Kavitha, C. Namasivayam, Experimental and kinetic studies on methylene blue adsorption by coir pith carbon, Bioresource Technol., 98, 1, 14-21(2007).
    155. A1exandre M, Dubois P. Po1ymer-1ayered si1icate nanocomposites: preparation , properties and uses of a new class of materials , Materials Science and Engineering , 2000 ,28 (1/2) : 1-63.
    156. Murray H H. Traditional and new applications for kao1in , smectite and palygorskite: a general overview, J. App1ied C1ay Science, 2000, 17 (5/6) :207-221.
    157. Stretz H A, Pau1 D R, Cassidy P E. Po1y( styrene-co cry1onitri1e) / montmorillonite organoclay mixtures: a mode1 system for ABS nanocomposites. Po1ymer, 2005 ,46(11) : 3 818-3 830.
    158. Cox M,Rus-Romero JR,Sheriff TS. The application of montmoril-loniteclays impregnated with organic extractants for the removal of metals from aqueous solution. Chemical En-gineering Journal,2001(84):107
    159. AgaglT,KogaT,Takeichi T. Studies on the rmal and mechanical properties of poly im ide-clay nanocomposites. Polymer, 2001, 42:3399.
    160. K. Yang, B. S. Xing, Desorption of polycyclic aromatic hydrocarbons from carbon nanomaterials in water, Environ Pollut,145, 529-537 (2007).
    161. Kerecm, Bogatajm,eta1.Permeability of pig urinary bladder wallithe efect of chitosan and the role of calcium, European Journal of Pharmaceutical Sciences,25, 1, 113-121 (2005).
    162. S. Iijima, Nature, 354, 56 -58 (1991).
    163. D. A. Walters, L. M. Ericson, M. J. Casavant, Appl. Phys. Lett., 74, 3803-3805 (1999).
    164. S. Iijima, C. Brabec, A. Maiti, J. Bernholc, J. Chem. Phys.,104, 5, 2089-2092 (1996).
    165. E. C. Dickey, C. A. Grmies, M. K. Jain, K. G. Ong, D. Qian, P. D. Kichambare, R. Andrews, D. Jacques, Appl. Phys. Lett., 79, 4022-4024 (2001).
    166. W. X. Sun, Z. P. Huang, L. Zhang, J. Zhu, Carbon, 41, 1685-1687(2003).
    167. Marek Trojanowicz, TrAC Trends in Analytical Chemistry, 25, 5, 480-489 (2006).
    168. J. Y. Seung, H. C. Jung, S. N. Kee, R. P. Chong, International Journal of Hydrogen Energy, 35, 23, 13062-13067 (2010).
    169. J. Z. Luo, L. Z. Gao, Y. L. Leung, Catal. Lett., 66, 91-97 (2000).
    170. Lee D J, Cui T H, Microelectronic Engineering, 2012, 93:39-42
    171. T. Y. Liu, L. Zhao, Z. L. Wang, Removal of hexavalent chromium from wastewater by FeO-nanoparticles-chitosan composite beads: Characterization, kinetics and thermodynamics, Water Sci. Technol. 66, 1044–1051 (2012).
    172. B. Guan, W. Ni, Z. Wu, Y. Lai, Removal of Mn(II) and Zn(II) ions from flue gas desulfurization wastewater with water-soluble chitosan, Sep. Purif. Technol. 65, 269–274 (2009).
    173. G.Z. Kyzas, M. Kostoglou, A.A. Vassiliou, N.K. Lazaridis, Treatment of real effluents from dyeing reactor: Experimental and modeling approach by adsorption onto chitosan, Chem. Eng. J. 168, 577–585(2011).
    174. Y. H. Zhang, Y.S. Szeto, S. Ke, W. Tan, L. Liao, Dyeing and finishing effluent treatment with chitosan/inorganic composites, Key Eng. Materi. 334, 1069–1072 (2007).
    175. P. He, S.S. Davisa, L. Illum, In vitro evaluation of the mucoadhesive properties of chitosan microspheres, Int. J. Pharm. 166, 75–88(1998).
    176. S.B. Patil, K.K. Sawant, Chitosan microspheres as a delivery system for nasal insufflation, Colloid Surface B. 84, 384–389(2011).
    177. 江晃榮,「生體高分子(幾丁質、膠原蛋白)產業現況與展望」,財團法人生物技術開發中心(1998)。
    178. Hernadi K, Ljubović E, Seo J W, Forró L, Acta Materialia, 2003, 51(5): 1447-1452.
    179. Liu Y Q, Gao L, Carbon, 2005,43(1): 47-52.
    180. Liu J, Rinzler A G, Dai H J, Hafner J H, Bradley R K, Boul P J, Science, 1998, 280:1253–1256.

    無法下載圖示 全文公開日期 2024/01/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE