簡易檢索 / 詳目顯示

研究生: 林穎志
YING-CHIH LIN
論文名稱: 鎂基複合材料機械性質及其熱傳導性之研究
Study of mechanical properties and thermal conductivity of Magnesium matrix composites
指導教授: 黃崧任
Song-Jeng Huang
口試委員: 羅裕龍
Yu-Lung Lo
丘群
Chun Chiu
林柏州
Po-Chou Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 120
中文關鍵詞: 鎂基複合材料T6熱處理機械性質熱傳導係數鹽霧試驗
外文關鍵詞: magnesium matrix composites, T6 heat- treatment, mechanical properties, thermal conductivity, salt spray test
相關次數: 點閱:273下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究選用AZ91D、AM60B、AM50A等鎂合金作為基體材料,而選用的強化相顆粒為氮化鋁 (AlN)、氧化鋁 (Al2O3) 微米顆粒,分別以1、5wt. %之添加量,藉由重力鑄造方式進行攪拌混合,之後再將製備好的鑄錠,切割成試片,來測試鎂基複合材料之機械性質、微觀結構、熱傳導性質以及其耐腐蝕性。
    在拉伸試驗方面,添加強化相顆粒後,材料的降伏強度、極限抗拉強度比起原材均有增加的趨勢;硬度方面,由於材料添加高硬度陶瓷顆粒以及經過T6熱處理,析出Mg17Al12相,而有增加的趨勢;熱傳導係數方面,添加AlN熱傳導係數提升較多,故AlN有助於改善材料熱傳導性;鹽霧試驗方面,由於鎂合金含有錳元素較能抵抗鹽霧的腐蝕,故鎂基複合材料腐蝕速率與母材相較之下,差異不大,故添加AlN 、Al2O3顆粒對鎂合金的腐蝕性影響較小。


    In this study, magnesium alloys such as AZ91D, AM60B and AM50A were selected as the matrix materials, and the reinforcement particles selected were aluminium nitride (AlN) and aluminium oxide (Al2O3) microparticles. In addition, the amount of 1, 5 wt.% reinforcement particles were added respectively into matrix by gravity casting. After casting the prepared ingot were used to test the mechanical properties, microstructure, thermal conductivity and corrosion resistance of the magnesium matrix composites.
    In the tensile test, after added reinforcement particles the material's Yield strength and ultimate tensile strength tend to increase compared with the pure magnesium alloys. In terms of hardness, due to the addition of high-hardness ceramic particles to the material and the heat treatment by T6, the Mg17Al12 phase is precipitated, which has an increasing tendency. In terms of thermal conductivity, addition of AlN heat transfer coefficient is enhanced. So AlN particles help to improve the thermal conductivity of the material. In the salt spray test, since the magnesium alloy contains manganese, it is more resistant to salt spray corrosion. Therefore, the corrosion rate of the magnesium matrix composites was not much different from that of AZ91D, AM60B and AM50A matrix. So the corrosion of the magnesium alloy is not changed by the addition of AlN and Al2O3 particles.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VIII 表目錄 XIII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 3 1.2.1 本實驗室複合材料熔煉製程 3 1.2.2 強化相對機械性質的影響 4 1.2.3 材料熱傳導相關文獻 11 1.2.4 鎂合金腐蝕相關文獻 15 1.3 文獻整理心得 22 1.4 研究目的與動機 25 第二章 研究理論基礎 26 2.1 鎂之基本性質 26 2.2 鎂合金之特性 27 2.3 鎂合金命名方法 29 2.4 添加不同合金元素對鎂合金的影響 30 2.5 鎂基複合材料強化理論 33 2.5.1 晶粒細化強化 33 2.5.2 熱膨脹係數差異之影響 33 2.5.3 Orowan強化與散佈強化 34 2.5.4 負荷影響 34 2.5.5 析出強化 35 2.6 鎂合金鑄造 35 2.6.1 砂模鑄造法 35 2.6.2 壓力鑄造法 36 2.6.3 重力鑄造法 36 2.6.4 真空鑄造法 36 2.7 鎂合金之熱處理 37 2.8 熱傳導係數之定義 38 2.9 複合材料物理性質的複合規律 39 2.10熱傳導係數量測方法 40 2.11鎂的腐蝕 41 2.11.1 腐蝕的定義 41 2.11.2影響鎂腐蝕的因素 41 第三章 實驗方法與步驟 45 3.1 實驗方式 45 3.2 實驗流程圖 46 3.3 實驗材料 47 3.4 實驗設備 49 3.4.1 鑄造用熔煉爐 49 3.4.2 動態拉伸試驗機 (Material Test system, MTS) 50 3.4.3 微型維克氏硬度機 (Micro-Vickers hardness tester) 51 3.4.4 濕式自動研磨/拋光機 52 3.4.5 高溫熱處理爐 53 3.4.6 光學顯微鏡 (Optical Microscopy, OM) 54 3.4.7掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 54 3.4.8 X光繞射分析儀 (X-Ray Diffraction Analyzer, XRD) 55 3.4.9 熱傳導分析儀 56 3.4.10 鹽霧試驗機 57 3.4.11 恆電位電流儀 58 3.5 鎂基複合材料製備 59 3.6 試片規劃與製造 60 第四章 結果與討論 62 4.1鎂基複合材料添加不同強化相與含量之金相圖 62 4.1.1鎂基複合材料密度 63 4.1.2 AZ91D鎂合金 64 4.1.3 AM60B鎂合金 67 4.1.4 AM50A鎂合金 70 4.2鎂基複合材料XRD成分分析 73 4.3 氮化鋁、氧化鋁對鎂基複合材料機械性質之影響 75 4.3.1 拉伸試驗 75 4.3.2 硬度試驗 79 4.4 鎂基複合材料熱傳導分析結果 82 4.5 鎂基複合材料鹽霧試驗結果 86 4.6 鎂基複合材料極化實驗結果 89 4.7 強化相貢獻度分析 93 第五章 結論 99 第六章 未來研究方向 100 參考文獻 101

    [1]黃政揚 (2015). “WS2無機奈米管對鎂合金複合材料的機械性質與微觀組織影響之研究”, 國立台灣科技大學機械工程學系碩士論文.
    [2]康程為 (2017). “WS2無機奈米材料製作與不同強化相對鋁基複合材料的機械性質及微觀組織影響之研究”, 國立台灣科技大學機械工程學系碩士論文,【未發表碩論】
    [3]Habibnejad-Korayem, M., Mahmudi, R., & Poole, W. (2009). Enhanced properties of Mg-based nano-composites reinforced with Al2O3 nano-particles. Materials Science and Engineering A, 519, 198-203.
    [4]Knowles, A., Jiang, X., Galano, M., & Audebert, F. (2014). Microstructure and mechanical properties of 6061 Al alloy based composites with SiC nanoparticles. Journal of Alloys and Compounds (615), S401-S405.
    [5]Esawi, A., Morsi, K., Sayed, A., Taher, M., & Lanka, S. (2010). Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites. Composites Science and Technology, 70(16), 2237-2241.
    [6]Chen, J., Bao, C., Chen, W., Zhang, L., & Liu, J. (2017). Mechanical Properties and Fracture Behavior of Mg-Al/AlN Composites with Different Particle Contents. Journal of Materials Science & Technology, 33(7), 668-674.
    [7]陳仲威 (2010). “添加AlNp鎂基複材製備及其機械性質之研究”, 國立中正大學機械工程學系碩士論文.
    [8]Li, B., Hou, L., Wu, R., Zhang, J., Li, X., Zhang, M., Dong, A., Sun, B. (2017). Microstructure and thermal conductivity of Mg-2Zn-Zr alloy. Journal of Alloys and Compounds, 722, 772-777.
    [9]Hanzel, O., Sedláček, J., Hadzimová, E., & Šajgalík, P. (2015). Thermal properties of alumina–MWCNTs composites. Journal of the European Ceramic Society, 35(5), 1559-1567.
    [10]Song, G., Bowles, A. L., & StJohn, D. H. (2004). Corrosion resistance of aged die cast magnesium alloy AZ91D. Materials Science and Engineering: A, 366(1), 74-86.
    [11]Song, G., Atrens, A., & Dargusch, M. (1998). Influence of microstructure on the corrosion of diecast AZ91D. Corrosion science, 41(2), 249-273.
    [12]Shahar, I., Hosaka, T., Yoshihara, S., & MacDonald, B. (2017). Mechanical and Corrosion Properties of AZ31 Mg Alloy Processed by Equal-Channel Angular Pressing and Aging. Procedia engineering, 184, 423-431.
    [13]Manivannan, S., Dinesh, P., Babu, S. K., & Sundarrajan, S. (2015). Investigation and corrosion performance of cast Mg–6Al–1Zn+ XCa alloy under salt spray test (ASTM-B117). Journal of Magnesium and Alloys, 3(1), 86-94.
    [14]洪品森 (2009). “鎂基複合材料的製備及其熱處理後機械性質之研究”, 國立中正大學機械工程學系碩士論文.
    [15]周暾煜 (2016). “等徑轉角擠壓 (ECAP) 製程及添加物對AZ鎂合金儲氫性能之影響”, 國立台灣科技大學機械工程學系碩士論文.
    [16]吳懿璋 (2014). “強化相粒徑與含量對AZ61/SiCp鎂合金複合材料於擠製加工及後續退火製程在機械性質之研究”, 國立台灣科技大學機械工程學系碩士論文.
    [17]彭偉益 (2016). “WS2無機奈米材料製作與其對鋁基複合材料強化的應用”, 國立台灣科技大學機械工程學系碩士論文.
    [18]林柏州 (2014). “等徑轉角擠型(ECAE)製程對AM60/ Al2O3p鎂基複合材料微結構及機械性質之影響”, 國立中正大學機械工程學系博士論文.
    [19]丁國華, 趙健祥, 方春樹, 蕭俊德 (1989).“新標準課程鑄造學,” 高立圖書有限公司, 五版.
    [20]張晉昌 (2008).“鑄造學,” 全華圖書股份有限公司, 二版.
    [21]Holman .J. P. (2006).“Heat Transfer,” 高立圖書有限公司.
    [22]Fei, Z. M., Li, C.G., Huang (1990). "Particle reinforced metal matrix composites thermal conductivity." Composites Materials, Vol.7, No.3.
    [23]鄭富隆 (2011). “添加微米對AlN 對AZ31鎂合金之熱傳性質之研究”, 國立中正大學機械工程學系碩士論文.
    [24]王偉成 (2017). “電解液中添加WS2無機奈米顆粒對AZ31鎂合金的微弧氧化陶瓷膜影響之研究”, 國立台灣科技大學機械工程學系碩士論文.【未發表碩論】
    [25]Shorowordi, K., Laoui, T., Haseeb, A., Celis, J.-P., & Froyen, L. (2003). Microstructure and interface characteristics of B4C, SiC and Al2O3 reinforced Al matrix composites: a comparative study. Journal of Materials Processing Technology, 142(3), 738-743.
    [26]Rahmany-Gorji, R., Alizadeh, A., & Jafari, H. (2016). Microstructure and mechanical properties of stir cast ZX51/Al2O3p magnesium matrix composites. Materials Science and Engineering: A, 674, 413-418.
    [27]Yamasaki, M., & Kawamura, Y. (2009). Thermal diffusivity and thermal conductivity of Mg–Zn–rare earth element alloys with long-period stacking ordered phase. Scripta Materialia, 60(4), 264-267.
    [28]Rudajevová, A., & Lukáč, P. (2005). Comparison of the thermal properties of AM20 and AS21 magnesium alloys. Materials Science and Engineering: A, 397(1-2), 16-21.
    [29]鹽水噴霧試驗法 CNS8886 (2002). 經濟部標準檢驗局.
    [30]ASTM- B117 (2011). 美國材料與試驗協會.
    [31]Zakaria, H. (2014). Microstructural and corrosion behavior of Al/SiC metal matrix composites. Ain Shams Engineering Journal, 5(3), 831-838.
    [32]Samuel Ratna Kumar, P., Robinson Smart, D., & John Alexis, S. (2017). Corrosion behaviour of aluminium metal matrix reinforced with multi-wall carbon nanotube. Journal of Asian Ceramic Societies, 5(1), 71-75.
    [33]Zhang, Z., & Chen, D. (2008). Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites. Materials Science and Engineering: A, 483, 148-152.
    [34]Zhou, X., Su, D., Wu, C., & Liu, L. (2012). Tensile mechanical properties and strengthening mechanism of hybrid carbon nanotube and silicon carbide nanoparticle-reinforced magnesium alloy composites. Journal of Nanomaterials, 2012, 83.

    QR CODE