簡易檢索 / 詳目顯示

研究生: 陳亭傑
Ting-Chieh Chen
論文名稱: 一氧化碳、氧氣以及水分子在鉑-銥/氧化銥(110)表面進行吸附作用與化學反應之研究
Theoretical study of CO, O2 and H2O Adsorption and Reaction on Pt-Ir/IrO2 (110) surface
指導教授: 江志強
Jyh-Chiang Jiang
口試委員: 王伯昌
Bo-Cheng Wang
林志興
Jyh-Shing Lin
蔡大翔
Dah-Shyang Tsai
劉進興
Chin-Hsin Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 119
中文關鍵詞: IrO2密度泛涵理論計算CO 氧化反應水裂解反應
外文關鍵詞: IrO2, Density Functional Calculations, CO oxidation, H2O decomposition
相關次數: 點閱:262下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文中我們利用理論計算來研究CO, O2在IrO2 (110)表面上進行吸附作用,以及在IrO2 (110)表面上進行O2裂解反應與CO氧化反應。本研究中模擬計算最佳化後的IrO2單元晶胞之powder x-ray diffraction pattern以及目前廣用的Rietceld refinement method來驗證實驗與模擬的精確性,並且得到一與實驗值誤差極小的單元晶胞。計算結果顯示,IrO2 (110)表面的表面重構不明顯。可見金紅石IrO2 (110)的表面相當穩定。本研究中,我們計算了CO分子與不同型態的氧原子進行氧化反應,結果顯示CO在多氧環境下的氧化反應有較低的能障。此外,在本文中我們模擬不同覆蓋率的貴金屬於IrO2 (110)表面上的吸附作用。在 ML覆蓋率下,貴金屬最穩定的吸附位置為沿著[001]方向,吸附於Obr原子與Ircus原子之間。Ir原子與Pt原子的平均吸附能分別為5.13 eV以及3.81 eV。隨著覆蓋率增加到 ML,貴金屬平均的吸附能也跟著下降,在Ir/IrO2與Pt/IrO2表面中,最穩定的吸附位置為沿著[001]方向,吸附於Obr原子與Ircus原子之間。在Pt2Ir/IrO2中最穩定的吸附位置為沿著[ ]方向,吸附於Obr原子與Ircus原子之間。本研究在IrO2, Pt/IrO2, Ir/IrO2, PtIr/IrO2表面進行水裂解反應。由計算結果顯示,較高覆蓋率之貴金屬吸附在IrO2 (110)表面上對於水裂解反應有良好的催化效果。我們也在IrO2, Pt/IrO2, Ir/IrO2, Pt2IrO2進行CO氧化反應以及CO2脫附的模擬。計算結果顯示Pt/IrO2表面對CO氧化反應以及CO2脫附有良好的催化效果。


    A DFT study of the adsorption and reaction of CO, O2 and H2O on the IrO2 rutile-type (110) 2 × 1 surface was performed. The structural identification was determined via a simulation of X-ray powder diffraction (XRD). Structure parameters of IrO2 were refined by the Rietveld method from simulated XRD data. The calculated XRD is in good agreement with previous experimental works by Natl. et al. The calculated results show that the surface reconstruction of IrO2 (110) surface is not obvious due to its rutile structure. In addition, the potential energy surfaces of CO oxidation with different oxygen species on the surfaces were examined. The barrier of CO oxidation on the oxygen-rich surface is lower. Furthermore, the Ir and Pt adsorptions on the IrO2 (110) 2 × 1 surface at coverage of 1/2 and 3/4 ML were simulated. It has been found that the most stable site of the 1/2 ML is with the metal atom bridging between Obr atom and Ircus atom along the [001] direction. The adsorption energy of Ir and Pt are 5.13 eV and 3.81 eV, respectively. The simulation model of Pt2Ir/IrO2 (110) surface at a metal coverage of 3/4 ML is sequential addition of Pt to the 1/2 ML PtIr/IrO2 (110) surface, and the most stable site of Pt2Ir/IrO2 surface is Pt metal bridging between Obr atom and Ircus atom along the[ ]direction. At the coverage of 3/4 ML, the average adsorption energy per atom is lower than that at the coverage of 1/2 ML. Final, the CO oxidation with H2O on the Pt-Ir/IrO2 (110) surface is also examined. The reaction energies and barriers for the water dissociation and CO oxidation have been predicted in solid—gas interface. On the basis of energetics, the Pt/IrO2 (110) surface has good catalytic ability for water dissociation and CO oxidation reaction

    摘要 ……………………………………………………………………I 致謝……………………………………………………………………IV目錄 ……………………………………………………………………V 圖目錄 ………………………………………………………………IX 表目錄 ……………………………………………………………XVII 第一章 緒論 ……………………………………………………………1 1.1 前言 ……………………………………………………… 1 1.2 燃料電池的發展簡介 …………………………………… 2 1.3燃料電池的總類 ………………………………………… 3 1.3.1 鹼液型燃料電池(AFC) …………………………… 4 1.3.2 磷酸型燃料電池(PAFC)………………………… 8 1.3.3熔融碳酸鹽型燃料電池(MCFC)………………… 8 1.3.4固態氧化物型燃料電池(SOFC)…………………… 9 1.3.5質子交換薄膜型燃料電池(PEMFC) ……………… 9 1.3.6直接甲醇燃料電池(DMFC) ……………………… 10 1.4直接甲醇燃料電池之電化學原理 ……………………… 10 1.5直接甲醇燃料電池之構造與發展狀況 …………………13 1.5.1 DMFC之電解質薄膜 ………………………14 1.5.2 DMFC之陰極材料………………………………15 1.5.3 DMFC之陽極材料………………………………16 1.6氧化銥之應用與文獻回顧………………………………16 1.7 研究動機…………………………………………………20 第二章 計算方法………………………………………………………21 2.1 計算方法…………………………………………………22 2.1.1密度泛涵理論………………………………………22 2.1.2 LDA與GGA………………………………………23 2.1.3 Bloch定理…………………………………………24 2.1.4 Plane-wave basis set………………………………25 2.1.5贗勢與PAW ………………………………………25 2.2 建立模型…………………………………………………28 2.2.1 IrO2 單元晶胞……………………………………28 2.2.2 IrO2 (110)表面……………………………………32 2.2.3表面重構……………………………………………34 第三章 結果與討論……………………………………………………36 3.1 O2 與 CO 吸附在IrO2 (110)表面………………………36 3.2 O2 裂解反應………………………………………………40 3.3 CO氧化反應………………………………………………42 3.3.1 CO氧化反應(I) CO + Obr  CO2……………43 3.3.2 CO氧化反應(II) CO + Otop  CO2 …………46 3.3.3 CO氧化反應(III) CO + O2  CO2 + O………47 3.4水裂解反應………………………………………………51 3.4.1 ML貴金屬吸附在IrO2 (110)表面……………51 3.4.2水在IrO2 (110)表面的裂解反應…………………55 3.4.3水在Ir/IrO2 (110)表面的裂解反應………………57 3.4.4水在Pt/IrO2 (110)表面的裂解反應………………59 3.4.5水在PtIr/IrO2 (110)表面的裂解反應………………61 3.4.6 ML覆蓋率的貴金屬吸附在IrO2 (110)表面…63 3.4.7水在 ML覆蓋率的Pt/IrO2表面的裂解反應……67 3.4.8水在 ML覆蓋率的Ir/IrO2表面的裂解反應……69 3.4.9水在 ML覆蓋率的Pt2Ir/IrO2表面的裂解反應…71 3.4.10水裂解反應的討論………………………………75 3.5 CO吸附在不同表面上的比較……………………………81 3.5.1配位鍵結……………………………………………83 3.5.2 Back donation………………………………………84 3.5.3 C—O鍵長與CO伸張振動頻率…………………86 3.6 Water Gas Shift……………………………………………88 3.6.1在IrO2 (110)表面進行WGS的反應機制…………88 3.6.2在Pt/IrO2 (110)表面進行WGS的反應機制………92 3.6.3在Ir/IrO2 (110)表面進行WGS的反應機制………97 3.6.4在Pt2Ir/IrO2 (110)表面進行WGS的反應機制…101 3.6.4.1………………………………………………102 在Pt2Ir/IrO2 (110)表面進行WGS的反應機制(I) 3.6.4.2………………………………………………106 在Pt2Ir/IrO2 (110)表面進行WGS的反應機制(II) 3.6.5 WGS反應機制的討論……………………………110 第四章 結論…………………………………………………………111 第五章 參考文獻……………………………………………………114

    1. 衣寶廉,燃料電池 五南圖書出版公司 (2003)
    2. W. R. Grove, Philos .Mag. Ser.3, 14 ,127 (1839)
    3. 吳滄琪,磺酸化高分子於燃料電池質子交換膜製備之應用,元智大學化工系(2003)
    4. 鄭耀宗,徐耀昇,燃料電池技術進展的現況,燃料電池論文集,15-27 (1989)
    5. 詹世弘,二十一世紀之星-燃料電池,燃料電池研討會,元智大學 (2000)
    6. 鄭煜騰、萬瑞霙、林修正,酸性燃料電池的製成研究,能源季刊,第二十五卷第四期,p.161 (1995)
    7. O. Stonehart ,J. Apl. Electrochem.,Vol.22,p.995 (1992)
    8. 李國霖,熔融碳酸鹽燃料電池的研發,能源季刊,第二十四卷 第四期,p.57 (1997)
    9. A.J. Apleby and F.R. Folkes , Fuel Cell Handbook,Van Nostrand Reinhold”,New York (1989)
    10. L. J. M. J. Bolmen and M. N. Megerwa ,Fuel Cell Systems, Plenum Press , New York and London (1993)
    11. A. Heinzel, R. Nolte, K. Ledjeff-Hey and M. Zedda, Electrochim. Acta, 43, 3817 (1998).
    12. S. Surampudi, S. R. Narayanan, and E. Vamos, Journal of Power Sources, 47, 377 (1994)
    13. M. P. Hogarth, and G. A. Hards, Platinum Metal Rev., 40, 150 (1996)
    14. J. Shim, D. Y. Yoo, and J. S. Lee, , Electrochim. Acta, 45, 1943 (2000)
    15. 陳竣明,直接甲醇燃料電池陽極奈米合金觸媒之製備與鑑定,台灣科技大學化工系 (2004)。
    16. Adrian A. Bolzan, Celesta Fong, Brendan J.Kennedy'z Christopher J. Howard Acta Cryst. (1997). B53, 373-380
    17. JCPDS card no. 15-0870 (IrO2), International Centre for Diffraction Data Newtown Square, PA, USA
    18. L. F. Mattheiss, Phys. Rev. B, Vol. 13, pp.2433-2450 (1976)
    19. W. D. Ryden and A. W. Lawson, C. C. Sartain, Phys. Rev. B, Vol. 1, pp.1494-4500 (1970)
    20. R. C. Weast (Ed.) Handbok and Chemistry and Physics, F146 (1989)
    21. T. Nakamura, K. Nakao, A. Kamisawa, H. Takasu, Jpn. J. Appl. Phys., Part 1, Vol. 34, pp5184 (1995)
    22. T. Tamura, K. Matsuura, H. Ashida, K. Kondo, S. Otani, Appl. Phys. Lett., Vol. 74, NO. 22, p.3395 (1999)
    23. T. Nakamura, Y. Nakao, A. Kamisawa, H. Takasu, Appl. Phys. Lett., Vol.65 p.1522 (1994)
    24. A. Osaka, T. Takatsuna, Y. Miura, J. Non-crystalline Solids, Vol. 178 P.313 (1994)
    25. N. Bestaoui, E. Prouzet, P. Deniard, and R. Brec, Thin Solid Films, Vol. 235, p.35 (1993)
    26. T. Ioroi, N. Kitazawa, K. Yasuda, Y. Yamamoto, H. Takenaka, J. Electrochem. Soc., Vol. 147 NO. 6, p. 2018 (2000)
    27. R. S. Chen, Y. S. Huang, Y. M. Liang, C. S. Hsieh, D. S. Tsai, K. K. Tiong, Appl. Phys. Lett., 84 NO.9, pp.1552-1554 (2004)
    28. A. Karthugeyan, R. P. Gupta, K. Scharnagl, M. Burgmair, S. K. Sharma, I. Eisele, Sens, Actuators B, 85 pp. 145-153 (2002)
    29. J. m. Hu, J. Q. Zhang, C. N. Cao, Int. J. Hydrogen energy, 29 pp. 791-797 (2004)
    30. C. P. de Paul, S. Trasatti, J. Electroanal. Chem., pp. 145-151 (2002)
    31. A. J. Terezo, E. C. Pereira, Electrochimica Acta, 45 pp. 4351-4358 (2000)
    32. M. V. Kortenaar, J. F. Vente, D. J. W. Ijdo, S. Muller, R. Kotz, J. power Sources, 56 pp.51-60 (1995)
    33. R. Kotz, S. Stuci, Electrochimica Acta, 31 pp.1311-1316 (1986)
    34. S. C. Mailley, M. Hyland, P. Mailley, J. M. McLaughlin, E. T. McAdams, Mater. Sci. Eng’ng., 21 pp. 167-175 (2002)
    35. A. Blau, C. Ziegler, m. Heyer, F. Endres, G. W. Gopel, Biosenser & Bioelectronics, 12 pp. 883-892 (1997)
    36. A. Norlin, J. Pau, C. Leygraph, J. Electrochem. Soc., 152 J85-J92 (2005)
    37. R. D. Meyer, S. F. Cogan,T. H. Nguyen, R. D. Rauh, IEEE trans on Natural Systems and Rehabilitation Engineering, 9 pp. 2-11 (2001)
    38. A. Hamnett, B. J. Kennedy, Electrochimica Acta, 33 pp. 1613-1618 (1988)
    39. H. Tsaprailis, V. I. Birss, Electrochem, Solid-state Lett., 7 A348-352 (2004)
    40. A. Chen, D. J. La Russa, B. Miller, Langmuir, 20 pp. 9695-9702 (2004)
    41. Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 558
    42. Kresse, G.; Furthmuller, J. Comput. Mater. Sci. 1996, 6, 15
    43. Kresse, G.; Hafner, J. Phys. ReV. B 1996, 54, 169
    44. White, J. A.; Bird, D. M. Phys. ReV. B 1994, 50, 4954.
    45. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. ReV. B 1992, 46, 6671
    46. Blochl, P. E. Phys. ReV. B 1994, 50, 17953. (b) Kresse, G.; Joubert, D. Phys. ReV. B 1999, 59, 1758
    47. Clotet, A.; Pacchioni, G. Surf. Sci. 1996, 346, 91
    48. W. J. Hehre, L. Radom, P. V. R. and J. A. Pople, “ab initio Molecular orbital theory”, John Wiley & Sons, New Tork 1986.
    49. J. P. LOWE, Quantum chemistry, 2nd ed. Academic Press, New York 1993.
    50. S. M. McMurry, Quantum chemistry, Addison-Wesley, New York 1994
    51. I. N. Levin, Quantum chemistry, 5th ed. Prentice-Hall, New Jersey 2000.
    52. A. Szabo, and N. S. Ostlund, Modern quantum chemistry: Introduction to advanced electronic structure theory, 1993.
    53. Pilar, Frank L, “Elementary quantum chemistry”, 2nd ed, McGraw-Hill, New York 1990
    54. W. Kohn, and L. J. Sham, Phys. Rev. 140, 1133A (1965)
    55. P. Hohenberg, and and W. Kohn, Phys. Rev., 136, 8648 (1964)
    56. W. Kohn, and L. J. Sham, Phys. Rev. 140, 1133A (1965)
    57. J. P. Perdew, Y. Wang, Phys. Rev. B, 33, 8800 (1986)
    58. J. P. Perdew, Y. Wang, Phys. Rev. B, 46, 6671 (1992)
    59. Ulitsky, A.; Elber, R. J. Chem. Phys. 1990, 92, 1510
    60. Mills, G.; Jo’nsson, H.; Schenter, G. K. Surf. Sci. 1995, 324, 305
    61. Henkelman, G.; Uberuaga, B. P.; Jo’nsson, H. J. Chem. Phys. 2000,113, 9901
    62. D. Vanderbilt, phys. Rev. B, 41, 7892 (1990)
    63. R. A. Young “The Rietveld Method”, 1995
    64. Mingyong Sun, Alan E. Nelson, and John Adjaye J. Phys. Chem. B 2006, 110, 2310-2317
    65. Ping Liu, J. Chem. Phys., 124, 141101 (2006)
    66. S. Gottesfeld, J. D. E. McIntyre, G. Beni, J. L. Shay, Appl. Phys. Lett. 33, 208-210 (1978).
    67. Th. Pauporté, R. Durand, J. Appl. Electrochem. 30, 35-41 (2000).
    68. A. Azens, J. Isisorsson, R. Karmhang, C. G. Granqvist, Thin Solid Films. 422, 1-3. (2002).
    69. A. Azens, C. G. Granqvist, Appl. Phys. Lett. 81, 928-929. (2002).
    70. B.R. Chalamala, Y. Wei, R.H. Reuss, S. Aggarwal, B.E. Gnade, R. Ramesh, J.M. Bernhand, E.D. Sosa, D.E. Golden, Appl. Phys. Lett. 74, 1394. (1999).
    71. B.R. Chalamala, Y. Wei, R. H. Reuss, S. Aggarwal, S.R. Perusse, B.E. Gnade, Ramesh, J. Vac. Sci. Technol. B. 18, 1919. (2000).
    72. R.S. Chen, H.M. Chang, Y.S. Huang, d.S. Tsai, S. Chattopadhysy, K.H. Chen, J. Cryst. Growth. 271, 105. (2004).
    73. Zhi-Pan. Liu, Stephen J. Jenkins, David A. King, Phys. Rev. Lett, 93, 156102 (2004).
    74. Shigeaki. Ono, Takumi. Kikegqwa, Yasuo Ohishi, Phys B, 363, 140-145, (2005).
    75. P. F. McMillan, Nature Mater. 1, 19 (2002).
    76. H. Over, A. P. Seitsonen. Science 297, 2003. (2002).
    77. H. Over, Y. D. Kim, A.P. Seitsonen, S. Wendt, E. Lundgren, M. Schmid, P. Varga, A. Morgante, G. Ertl. Science 287, 1474. (2000).
    78. Y. D. Kim, A. P. Seitsonen, H. Over. Phys. Rev. B 63, 115419. (2001).
    79. M. Knapp, A. P. Seitsonen, Y. D. Kim, H. Over. J. Phys. Chem. B 108, 14392. (2004).
    80. S. Wendt, M. Knapp, H. Over. J. Am. Chem. Soc. 126, 1537. (2004).

    81. Woei Wu Pai , T.Y. Wu, C.H. Lin, B.X. Wang, Y.S. Huang, H.L. Chou, Surface Science 601, 69-72, 2007
    82. P. Hu, Chem. Phys. Lett., 246, 73-78, 1995
    83. R. Gomez, M. J. Weavrz, Langmuir, 14 pp.2525-2534 (1998)
    84. C. Tang, S. Zou, M. W. Severson, M. J. Weaver, J. Phys. Chem. B, 102 pp.8546-8556 (1998)
    85. R. Gomez, M. J. Weavrz, J. Phys. Chem. B, 102 pp.3754-3764 (1998)
    86. Marek Gajdoˇs, Andreas Eichler and J¨urgen Hafner, J. Phys.: Condens. Matter 16 (2004) 1141–1164
    87. M. Knapp, D. Crihan, A. P. Seitsonen, E. Lundgren, A. Resta, J. N. Andersen, and H. Over, J. Phys. Chem. C 2007, 111, 5363-5373

    QR CODE