簡易檢索 / 詳目顯示

研究生: 張瑞益
Ruei-Yi Chang
論文名稱: 應用於多躍式都會區域網路之增強型無線權證環協定
Improved Wireless Token Ring Protocol (IWTRP) in Multihop Metropolitan Area Network
指導教授: 鄭瑞光
Ray-Guang Cheng
口試委員: 陳金蓮
Jean-Lien Chen
曹孝櫟
Shiao-Li Tsao
楊人順
Jen-Shun Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 63
中文關鍵詞: 多躍式都會區域網路通道使用率多權證循環同時傳送
外文關鍵詞: multihop metropolitan area network, channel utilization, multiple-token circulation, concurrent transmissions
相關次數: 點閱:191下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在由多個802.11無線節點所組成的多躍式都會區域網路(multihop metropolitan area network)中,資料的傳遞是以多躍式的方式傳送。然而,將傳統的802.11的媒介存取協定應用在多躍式環境時,將因封包過度碰撞所造成的通道使用率急遽下降。為了解決多躍式隨意網路(multihop ad hoc network)的封包過度碰撞問題,無線權證環協定(Wireless Token Ring Protocol, WTRP)提出非競爭式的媒介存取控制機制來避免碰撞的產生。然而,在多躍式都會區域網路環境下,無線權證環協定將面臨通道使用率過低的缺點。本篇論文旨在克服此缺點,並提出一增強型無線權證環協定(Improved Wireless Token Ring Protocol, IWTRP),希望能提供高速都會區域網路架構上的另一選擇。 增強型無線權證環協定採用空間再利用(spatial reuse)的概念,以多權證循環(multiple-token circulation)的方式,增加網路節點同時傳送(concurrent transmission)的機會,以提升通道使用率及網路流量(throughput)。本論文針對增強型無線權證環協定下的飽和流量提出分析模型,並以系統模擬確認分析結果的正確性。此外,並以系統模擬的方式進一步的探討增強型無線權證環協定在不同環境下的效能。由模擬結果顯示,與無線權證環協定相比較,特別是在高網路負載時,增強型無線權證環協定可以有效提高網路中每節點的平均網路流量。


In multihop metropolitan area network which is composed of 802.11 wireless nodes, the data exchange is relayed to remote nodes via multihop transmission. However, the conventional 802.11 medium access control (MAC) protocol applied in multihop network confronts the severe performance bottleneck due to the inferior channel utilization. Since the overly packet collision leads the channel utilization into severe degradation. In order to resolve the overly packet collision in multihop ad hoc network. The wireless token ring protocol (WTRP) proposes a collision-free MAC protocol to prevent unnecessary collisions. However, WTRP has the shortage on low channel utilization in multihop metropolitan area network. This thesis expects to overcome the weakness, and proposed an improved wireless token ring protocol (IWTRP) to provide an architecture option in high-speed multihop metropolitan area network. The IWTRP employs the spatial reuse concept to allow more concurrent transmissions to improve the channel utilization and network throughput via multiple-token circulation scheme. This thesis proposes an analytical model for saturation throughput in IWTRP, and the simulation verifies the accuracy and preciseness. This thesis also provides advanced performance comparison of IWTRP in different environment via simulation. The simulation results represents that the per-node throughput performance of IWTRP is much better than that of WTRP, especially at high network load.

摘要...................................................................I Abstract..............................................................II Table of Contents....................................................III List of Figures........................................................V List ofTables........................................................VII Chapter 1 Introduction.................................................1 1.1 Multihop Metropolitan Area Network.................................1 1.2 IEEE 802.11........................................................3 1.2.1 802.11 Overview..................................................3 1.2.2 802.11 DCF.......................................................4 1.3 Related Work.......................................................8 1.3.1 Data-Driven Cut-Through Medium Access Protocol...................8 1.3.2 Power Control Multiple Access Protocol..........................10 1.3.3 Medium Access Collision Avoidance via Enhanced Parallelism......12 1.3.4 Wireless Token Ring Protocol....................................13 1.3.5 Energy-Efficient Wireless Token Ring Protocol...................16 1.4 Motivation........................................................17 Chapter 2 System Model................................................20 2.1 System Environment................................................20 2.2 Basic Assumptions.................................................21 2.3 Frame Formats and Operation States................................23 2.4 Performance Metric................................................25 Chapter 3 Improved Wireless Token Ring Protocol.......................27 3.1 Protocol Description..............................................27 3.1.1 Flow Chart......................................................27 3.1.2 Multiple-Token Generating Procedures............................30 3.1.3 Collision Resolution............................................32 3.1.4 Recovery form Channel Error.....................................34 3.1.5 Modification for Dense Environment..............................34 3.2 Performance Analysis..............................................36 3.2.1 Analytical Model................................................36 3.2.2 Saturation Throughput...........................................37 Chapter 4 Numerical Results...........................................41 4.1 Simulation Setup..................................................42 4.2 Numerical Results.................................................44 4.2.1 Numerical Results of Saturation Throughput......................44 4.2.2 Performance Comparison with Varied Payload Sizes................47 4.2.3 Performance Comparison with Mixed Payload Size..................49 4.2.4 Performance Comparison in Dense Environment.....................51 4.2.5 Performance Comparison with Error-Prone Channel.................53 Chapter 5 Conclusion..................................................57 References............................................................60

[1] IEEE 802.11 WG, Part 11: Wireless lan medium access control (MAC) and physical layer (PHY) Specification, Aug. 1999.
[2] M. Ergen, D. Lee, R. Sengupta, and P. Varaiya, “WTRP-wireless token ring protocol ,”IEEE Transactions on Vehicular Technology, pp. 1863-1881, Nov 2004.
[3] M. Ergen, D. Lee, R. Sengupta, and P. Varaiya,“Wireless token ring protocol performance comparison with IEEE 802.11,”IEEE International Symposium on Computers and Communication (ISCC), pp. 710-715, 2003.
[4] D. Lee, A. Puri, P. Varaiya, R. Sengupta, R. Attitas, and S. Tripakis, “A wireless token ring protocol for ad hoc networks," Proceedings of the IEEE Aerospace Conference, pp. 1219-1228, 2002.
[5] D. Lee, R. Attitas, A. Puri, R. Sengupta, and S. Tripakis, P. Varaiya, “A wireless token ring protocol for intelligent transportation systems,” Proceedings of the IEEE Intelligent Transportation Conference, pp. 1152-1157, 2001.
[6] S. Mangold, S. Choi, G. R. Hiertz, O. Klein, and B. Walke, “Analysis of IEEE 802.11e for QoS support in wireless LANs,”IEEE Wireless Communications, pp. 40-50, Dec. 2003.
[7] D. Gu and J. Zhang,“QoS enhancement in IEEE 802.11 wireless local area networks,”IEEE Communications Magazine, pp.120-124, Jun. 2003.
[8] Y. Xiao,“IEEE 802.11n: enhancements for higher throughput in wireless LANs,” IEEE Wireless Communications, pp. 82-91, Dec. 2005.
[9] Y. Xiao and J. Rosdahl, "Throughput and delay limits of IEEE 802.11,” IEEE Communications Letters, pp. 355-357, Aug. 2002.
[10] P. Ferre, A. Doufexi, A. Nix, and D. Bull,“Throughput analysis of IEEE 802.11 and IEEE 802.11e MAC," IEEE Wireless Communications and Networking Conference (WCNC), pp. 783-788, Mar. 2004.
[11] J. Zhao, Z. Guo, and W. Zhn,“Power efficiency in IEEE 802.11a WLAN with cross-layer adaptation,”IEEE International Conference on Communications (ICC), pp. 2030-2034, 2003.
[12] S. Xu and T. Saadawi,“Does the IEEE 802.11 MAC protocol work well in multihop wireless ad hoc networks?”IEEE Communications Magazine, Jun. 2001. [13] A. Acharya, A. Misra, and S. Bansal,“High performance architectures for IP-based multihop 802.11 networks,”IEEE Wireless Communications, pp. 22-28, Oct. 2003.
[14] A. Acharya, A. Misra, and S. Bansal,“A label-switching packet forwarding architecture for multi-hop wireless LANs,”ACM Workshop on Wireless Mobile Multimedia (WoWMoM), Sep. 2002.
[15] D. Raguin, M. Kubisch, H. Karl, and A. Wolisz, “Queue-driven cut-through medium access in wireless ad hoc networks,” IEEE Wireless Communications and Networking Conference (WCNC), pp.1909-1914, Mar. 2004.
[16] J. P. Monks, V. Bharghavan, and W. W. Hwu, “A power controlled multiple access protocol for wireless packet networks”, IEEE INFOCOM, pp. 219-228, 2001.
[17] A. Muqattash and M. M. Krunz, “A distributed transmission power control protocol for mobile ad hoc networks,” IEEE Transactions on Mobile Computing, pp. 113-128, April-June. 2004.
[18] T. Elbatt and A. Ephremides, “Joint scheduling and power control for wireless ad hoc networks,” IEEE Transactions on Wireless Communications, pp. 74-85, Jan. 2004.
[19] A. Acharya, A. Misra, and S. Bansal, “MACA-P: A MAC for concurrent
transmissions in multi-hop wireless networks,” IEEE International Conference on Pervasive Computing and Communications, pp. 505-508, Mar. 2003.
[20] A. Acharya and S. Bansal, “Design and analysis of a cooperative medium access scheme for wireless mesh networks,” IEEE International Conference on Broadband Networks (BroadNets), pp. 621-631, 2004.
[21] Z. Deng, Y. Lu, C. Wang, W. Wang, “E2WTRP: An energy-efficient wireless token ring protocol,” IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp. 398-401, 2004.
[22] Z. Deng, Y. Lu, C. Wang, W. Wang, “EWTRP: Enhanced wireless token ring protocol for small scale wireless ad hoc networks," IEEE International Conference on Communications, Circuits and Systems (ICCAS), pp. 574-578, 2004. [23] I. Cidon and Y. Ofek, "MetaRing – A full-duplex ring with fairness and spatial reuse,” IEEE Transactions on Communications, pp. 110-120, Jan. 1993. [24] R. Khalaf and I. Rubin, “Enhancing the throughput-delay performance of IEEE 802.11-based networks through direct transmissions,” IEEE Vehicular Technology Conference (VTC), pp. 2912-2916, Set. 2004. [25] F. Ye, S. Yi, and B. Sikdar, “Improving spatial reuse of IEEE 802.11-based ad hoc networks,” IEEE Global Telecommunications Conference (GLOBALCOM), pp. 1013-1017, 2003. [26] G. Bianchi, “Performance analysis of the IEEE 802.11 distributed coordination function,”IEEE Journal of Selected Areas in Communications (JSAC), pp.535-547, Mar. 2000.
[27] G. Bianchi,“IEEE 802.11-saturation throughput analysis,” IEEE Communication Letters, pp. 318-320, Dec. 1998.
[28] P. Martini, O. Spaniol, T. Welzel, “File transfer in high-speed token ring network: performance evaluation by approximate analysis and simulation,” IEEE Journal of Selected Areas in Communications (JSAC), pp. 987-996, July, 1988.
[29] R. Cohen, A. Segall, “Multiple logical token-rings in a single high-speed ring,”IEEE Transactions on Communications, pp. 1712-1721, February-April, 1994.

QR CODE