簡易檢索 / 詳目顯示

研究生: 邱健瑋
Jian-Wei Chiou
論文名稱: 在機器型態通訊中以重傳式存取類別限制來控制無線電存取網路之超載
Retransmission-Based Access Class Barring for RAN overload control in Machine Type Communications
指導教授: 鄭欣明
Shin-Ming Cheng
口試委員: 張世豪
none
鄭瑞光
none
游創文
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 39
中文關鍵詞: 隨機存取存取類別限制無線電存取網路
外文關鍵詞: random access, access class barring, radio access network
相關次數: 點閱:194下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 支撐萬億個數目裝置是機器對機器(M2M)通信的關鍵挑戰,這將導致在被識為有光榮前景的通信蜂窩系統中的隨機接入信道裡嚴重的擁塞。 3GPP從而開發出了存取類別限制(ACB)來控制裝置同時存取序言的期望數目為一個。基於ACB,本研究根據機器的已傳送次數來做分群,且不帶來額外的負擔。本研究也提出了探索式的演算法,在此演算法中,傳送次數失敗越多次的機器將有更多的機會存取序言。通過自適應地更改ACB係數,提出了探索式演算法能有效且同時保持較高的存取成功概率和降低存取延遲。


    Supporting trillions of devices is the critical challenge in machine-to-machine (M2M) communications, which results in severe congestions in random access channels of cellular systems that have been recognized as promising scenarios enabling M2M communications. 3GPP thus developed the access class barring (ACB) to control the expected number of simultaneous accesses to a preamble to be one. Basing on ACB, this paper further groups devices according to their number of transmission trials without incurring extra overheads. A heuristic algorithm is proposed, where the devices with more number of retransmission failures will have more chance to access the preamble. By adaptively chaing the ACB factor, the proposed heuristic algorithm can reduce the access delay effectively and while maintaining high access success probability.

    Abstract in Chinese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Abstract in English . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.1 Basic Solving Congestion Solutions . . . . . . . . . . . . . . . . 5 3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.1 Traffic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2 Random Access Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.3 Access Class Barring Scheme . . . . . . . . . . . . . . . . . . . . . . . 10 3.4 Performance Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4 Retransmission Based Grouping ACB . . . . . . . . . . . . . . . . . . . . . . 13 5 Mathematics Formulate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.1 eNB Updates the ACB Barring Factor Dynamically . . . . . . . . . . . . 20 6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

    [1] 3GPP TR 22.368 v13.0.0, “Service requirements for Machine-Type Communications,” June 2014.
    [2] S.-Y. Lien, K.-C. Chen, and Y. Lin, “Toward Ubiquitous Massive Accesses in 3GPP Machine-to-
    Machine Communications,” IEEE Commun. Mag., vol. 49, no. 4, pp. 66–74, Apr. 2011.
    [3] 3GPP TR 22.868 v8.0.0, “Study on facilitating machine to machine communication in 3GPP systems,”
    July 2007.
    [4] 3GPP TR 23.888 v11.0.0, “System improvements for Machine-Type Communications (MTC),” Sept.
    2012.
    [5] ABI Research, “Cellular M2M Connectivity Services: The Market Opportunity for Moblie Operators,
    MVNOs, and Other Connectivity Service Providers,” 2012.
    [6] A. Rajandekar and B. Sikdar, “A Survey of MAC Layer Issues and Protocols for Machine-to-Machine
    Communications,” IEEE Internet of Things Journal, vol. 2, no. 2, pp. 175–186, 2015.
    [7] 3GPP TR 37.868 v11.0.0, “Study on RAN Improvements for Machine-type Communications,” Oct.
    2011.
    [8] M. Hasan, E. Hossain, and D. Niyato, “Random access for machine-to-machine communication in
    LTE-advanced networks: issues and approaches,” IEEE Commun Mag., vol. 51, no. 6, pp. 86–93,
    2013.
    [9] F. Cao and Z. Fan, “Cellular M2M network access congestion: Performance analysis and solutions,”
    in Proc. IEEE WiMob 2013, Oct. 2013, pp. 39–44.
    [10] A. G. Gotsis, A. S. Lioumpas, and A. Alexiou, “M2M scheduling over LTE: Challenges and new
    perspectives,” IEEE Vehicular Technology Magazine, vol. 7, no. 3, pp. 34–39, 2012.
    [11] 3GPP RAN2 70bis,R2-103742, “RACH overload solutions,” July 2010.
    [12] J.-P. Cheng, C.-H. Lee, and T.-M. Lin, “Prioritized Random Access with Dynamic Access Barring
    for MTC in 3GPP LTE-A Networks,” in Proc. IEEE GLOBECOM 2011 workshops, Dec. 2011, pp.
    368–372.
    [13] T. P. de Andrade, C. A. Astudillo, and N. L. da Fonseca, “Random Access Mechanism for RAN
    Overload Control in LTE/LTE-A Networks,” in Proc. IEEE ICC 2015, June. 2015, pp. 7607–7612.
    [14] H.-L. He, Q.-H. Du, H.-B. Song, W.-Y. Li, Y.-C. Wang, and P.-Y. Ren, “Traffic-Aware ACB Scheme
    for Massive Access in Machine-to-Machine Networks,” in Proc. IEEE ICC 2015, June. 2015, pp.
    2226–2231.
    [15] M. K. Giluka, A. Prasannakumar, N. Rajoria, and B. R. Tamma, “Adaptive rach congestion management
    to support m2m communication in 4g lte networks,” in Proc. IEEE ANTS 2013, Dec. 2013, pp.
    1–6.
    [16] Z. Wang and V. W. Wong, “Joint Access Class Barring and Timing Advance Model for Machine-Type
    Communications,” in Proc. IEEE ICC 2014, Jun. 2014, pp. 2357–2362.
    [17] S.-Y. Lien, T.-H. Liau, C.-Y. Kao, and K.-C. Chen, “Cooperative Access Class Barring for Machineto-
    Machine Communications,” IEEE Trans. Wireless Commun., vol. 11, no. 1, pp. 27–32, Dec. 2012.
    [18] D. Tribudi Wiriaatmadja and K. Choi, “Hybrid Random Access and Data Transmission Protocol for
    Machine-to-Machine Communications in Cellular Networks,” IEEE Trans. Wireless Commun., 2015,
    to be published.
    [19] K.-D. Lee, S. Kim, and B. Yi, “Throughput comparison of random access methods for M2M service
    over LTE networks,” in Proc. IEEE GLOBECOM 2011 workshops, Dec. 2011, pp. 373–377.
    [20] S.-Y. Shin and D. Triwicaksono, “Radio Resource Control Scheme for Machine-to-Machine Communication
    in LTE Infrastructure,” in Proc. IEEE ICTC 2012, Oct. 2012, pp. 1–6.
    [21] W. Jiang, X. Wang, and T. Deng, “Performance analysis of a pre-backoff based random access scheme
    for machine-type communications,” in Proc. IEEE IGBSG 2011, Apr. 2011, pp. 1–4.
    [22] S.-T. Sheu, C.-H. Chiu, Y.-C. Cheng, and K.-H. Kuo, “Self-adaptive persistent contention scheme for
    scheduling based machine type communications in lte system,” in Proc IEEE iCOST 2012, Jul. 2012,
    pp. 77–82.
    [23] G. C. Madueno, S. Stefanovic, and P. Popovski, “Efficient LTE access with collision resolution for
    massive M2M communications,” in Proc. IEEE GLOBECOM 2014 workshops, Dec. 2014, pp. 1433–
    1438.
    [24] C.-H. Wei, R.-G. Cheng, and F. M. Al-Taee, “Dynamic Radio Resource Allocation for Group Paging
    supporting Smart Meter Communications.” in Proc. IEEE SmartGridComm 2012, Nov. 2012, pp. 659–
    663.
    [25] K. S. Ko, M. J. Kim, K. Y. Bae, D. K. Sung, J. H. Kim, and J. Y. Ahn, “A Novel Random Access for
    Fixed Location Machine-to-Machine Communications in OFDMA Based Systems,” IEEE Commun
    Lett., vol. 16, no. 9, pp. 1428–1431, Sep. 2012.
    [26] C.-Y. Tu, C.-Y. Ho, and C.-Y. Huang, “Energy-Efficient Algorithms and Evaluations for Massive Access
    Management in Cellular Based Machine to Machine Communications,” in Proc. IEEE VTC 2011,
    Sep. 2011, pp. 1–5.
    [27] M.-Y. Cheng, G.-Y. Lin, H.-Y. Wei, and A. C.-C. Hsu, “Overload control for machine-typecommunications
    in LTE-advanced system,” IEEE Commun Mag., vol. 50, no. 6, pp. 38–45, 2012.
    [28] W. Jiang, X. Wang, and T. Deng, “Performance Analysis of a Pre-backoff Based Random Access
    Scheme for Machine-type Communications,” in Proc. IEEE IGBSG 2011, Apr. 2011, pp. 1–4.
    [29] X. Jian, Y. Jia, X. Zeng, and J. Yang, “A novel class-dependent back-off scheme for Machine Type
    Communication in LTE systems,” in Proc. IEEE WOCC 2013, May. 2013, pp. 135–140.
    [30] 3GPP TR 22.011 v13.1.0, “Technical Specification Group Services and System Aspects;Service accessibility,”
    Sept. 2014.
    [31] G.-Y. Lin, S.-R. Chang, and H.-Y. Wei, “Estimation and Adaptation for Bursty LTE Random Access,”
    2015, to be published.

    無法下載圖示 全文公開日期 2020/08/14 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE