簡易檢索 / 詳目顯示

研究生: 張筠萱
Yun-Hsuan Chang
論文名稱: 臺北市建築物質存量分析與預測
The Stock-flow of the Building Materials at the Urban Scale: Past Trend and Projection of Taipei City
指導教授: 洪嫦闈
Chang-Wei Hung
口試委員: 陳介豪
林彥宇
徐書謙
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 92
中文關鍵詞: 建築物質存量建築物質強度情境分析臺北市
外文關鍵詞: Building Material Stock, Building Material Intensity, Scenario Analysis, Taipei City
相關次數: 點閱:239下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

自人口與技術迅速成長開始,建築物質材料大量流入城市地區,大多數城市地區對這些主要是不可再生材料的消耗量大幅增加。且城市的擴張同時對環境會造成許多影響,從提取、轉化、運輸,在經過長時間的儲存在社會中,最終達到使用壽命終點。但存量的數量、組成等,決定了未來廢棄物流向與回收潛力,更深入的了解使用中的材料存量及其動態對於可持續發展至關重要。
本研究欲針對臺北市建築物質存量及其未來進行分析與預測,首要透過66個建築個案分析,分析臺灣四大建築類別(住宅類、工業類、文教類、商辦類),以及住宅類別中鋼筋混凝土構造(RC)和鋼骨鋼筋混凝土構造(SRC)之建築物質強度並了解其差異。後以四大建築類別之物質強度為基礎,結合其他公開資料,進行臺北市建築物質存量的分析。首先,使用實際新建與拆除面積可得知歷年建築物質存量變化,結合人口、社會經濟指標與相關文獻,推估未來存量流入與流出以及建築物質存量,另為符合實際情況及不確定性,採情境分析以瞭解因不同發展情境之下,對存量變化造成之影響。
藉由歷年存量計算結果比較後,得知臺北市各區現有建築物質存量多有增加,亦指年度平均物質流入量高於流出量。另以文獻之建築壽命分布為基礎推估年度拆除量與建築存量變化。其預測結果顯示老舊建築持續進行拆除但年度流出量呈現緩和現象,且受到臺北市整體人口未來成長趨緩而有下滑趨勢,如在2041年因需求驅動與拆除活動的減少,建築物質存量的流動較過往趨緩。研究結果如臺北市各區的建築存量差異與變化,可供政府和相關決策者制定城市發展策略、推動環保措施以及促進建築可持續發展。


Rapid growth of population and urbanization accelerate the construction of urban buildings and infrastructure to support the basic socioeconomic activities in cities. Tones and tones of construction materials have been used and stored in urban areas until the end of the service life. These construction materials are identified as parts of the urban material stocks. The quantity and composition of the urban material stock determine the future waste flow and recycling potential. A comprehensive understanding of in-use construction material stocks and flows is crucial for urban sustainable development.
This study aims to analyze and predict the building material stocks and flows of Taipei City from 1980 to 2041. First, 66 real case studies are used to estimate the building material intensity among Taiwan's four major building types (residential, industrial, educational, and commercial), as well as for reinforced concrete (RC) and steel-reinforced concrete (SRC) of typical residential buildings. Combined with actual newly constructed and demolished area statistics, the historical flows and variations of building material stock are identified. With demographic and socio-economic indicators, the inflow and outflow of building material stocks in the future are estimated, in order to predict the building material stocks for 12 districts within Taipei City until 2041. Scenario analysis is adopted to understand the impacts of different developments on stock variations to accommodate real-world situations and uncertainties.
The results reveal that the building material stocks in 12 districts of Taipei City have generally increased from 1980 to 2020, indicating the annual average inflow of building materials is higher than the annual outflow. Moreover, based on the distribution and length of building lifespan from previous studies, the annual demolition quantity and changes in building stock are estimated. Influenced by the declining trend in Taipei City's population growth from 2021 to 2040, the annual growth of building material inflow is expected to slow down by 2041 due to the slowdown of demand-driven activities and the demolition of existing buildings.
Based on these estimated results, scenario analysis is conducted to compare the difference in building stock volume under different scenarios in the future. The comparison and the predicted outcome provide valuable insights for the government and decision-makers in formulating urban development strategies, promoting environmental measures, and facilitating sustainable building development. These findings also serve as a reference for future research.

目錄 摘要 i ABSTRACT ii 誌謝 iv 目錄 v 圖目錄 vii 表目錄 viii 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3研究範圍 4 1.4 研究架構 5 第二章 文獻回顧 9 2.1物質存量 9 2.2 物質強度 12 2.3 建築壽命 15 2.4 不確定性分析 20 第三章 研究方法 23 3.1 研究流程 23 3.2 原始資料及資料前處理 26 3.3 物質強度 32 3.4 建築壽命 35 3.5建築物質存量 36 3.6 情境分析 41 第四章 研究結果與分析 43 4.1 建築物質強度數據分析 43 4.2 臺北市現存建築物質存量 47 4.3 臺北市未來建築物質存量 54 4.4 情境分析 58 第五章 結論與建議 71 5.1 研究結論 71 5.2 研究限制與建議 73 參考文獻 77

參考文獻
Augiseau, V., & Barles, S. (2017). Studying construction materials flows and stock: A review. Resources, Conservation and Recycling, 123, 153-164.
Bergsdal, Håvard, Brattebø, Helge, Bohne, Rolf A. and Müller, Daniel B. , (2007) Dynamic material flow analysis for Norway's dwelling stock, Building Research & Information, 35:5, 557 – 570. doi:10.1080/09613210701287588
Cao, Z., Liu, G., Duan, H., Xi, F., Liu, G., & Yang, W. (2019). Unravelling the mystery of Chinese building lifetime: A calibration and verification based on dynamic material flow analysis. Applied Energy. doi:https://doi.org/10.1016/j.apenergy.2019.01.106.
Chen, Y. (2005). Bei jing zhu zhai jian zhu cai liao liu fen xi [Analysis of material flow of residential buildings in Beijing]. Master’s thesis, Tsinghua University, Beijing, China.
Cheng, K. L., Hsu, S. C., Li, W. M., & Ma, H. W. (2018). Quantifying potential anthropogenic resources of buildings through hot spot analysis. Resources, Conservation and Recycling, 133, 10-20.
Cleveland, C.J. and Ruth, M. (1998), Indicators of Dematerialization and the Materials Intensity of Use. Journal of Industrial Ecology, 2: 15-50. https://doi.org/10.1162/jiec.1998.2.3.15
Daxbeck, H., Buschmann, H., Neumayer, S., Brandt, B., 2009. Methodology for Mapping of Physical Stocks. Deliverable 2.3. Resource Management Agency (RMA) (77p).
Fishman, T., Schandl, H., Tanikawa, H., Walker, P., Krausman, F., (2014). Accounting for the material stock of nations. J. Ind. Ecol. 18 (3), 407–420.
Gepts et al., 2019 B. Gepts, E. Meex, E. Nuyts, E. Knapen, G. Verbeeck Existing databases as means to explore the potential of the building stock as material bank Proceedings of the IOP Conference Series: Earth and Environmental Science (2019), p. 225.
Gerst, M.D. (2009). Linking material flow analysis and resource policy via future scenarios of in-use stock: an example for copper. Environmental science & technology, 43 16, 6320-5 .
Giesekam, J., Barrett, J., & Taylor, P.G. (2016). Scenario analysis of embodied greenhouse gas emissions in UK construction. Proceedings of the Institution of Civil Engineers - Engineering Sustainability.
Gontia, P., Nägeli, C., Rosado, L., Kalmykova, Y., & Österbring, M. (2018). Material-intensity database of residential buildings: A case-study of Sweden in the international context. Resources, Conservation and Recycling, 130, 228-239.
Göswein, V., Silvestre, J.D., Habert, G., & Freire, F. (2019). Dynamic assessment of construction materials in urban building stocks - A critical review. Environmental science & technology.
Guo, J., Miatto, A., Shi, F., & Tanikawa, H. (2019). Spatially explicit material stock analysis of buildings in Eastern China metropoles. Resources, Conservation and Recycling.
Hashimoto, S., Tanikawa, H., & Moriguchi, Y. (2007). Where will large amounts of materials accumulated within the economy go?--A material flow analysis of construction minerals for Japan. Waste management, 27 12, 1725-38 .
Heeren, N., & Fishman, T. (2019). A database seed for a community-driven material intensity research platform. Scientific Data, 6.
Heeren, N., & Hellweg, S. (2019). Tracking Construction Material over Space and Time: Prospective and Geo‐referenced Modeling of Building Stocks and Construction Material Flows. Journal of Industrial Ecology, 23.
Horvath, A. (2004). Construction materials and the environment. Annual Review of Environment and Resources, 29, 181-204.
Hsiao, T. Y., Huang, Y. T., Yu, Y. H., & Wernick, I. K. (2002). Modeling materials flow of waste concrete from construction and demolition wastes in Taiwan. Resources Policy, 28(1-2), 39-47.
Hsieh, H., & Forster, J.J. (2006). Residential construction quality and production levels in Taiwan. Engineering, Construction and Architectural Management, 13, 502-520.
Hu, M., Van Der Voet, E. and Huppes, G. (2010), Dynamic Material Flow Analysis for Strategic Construction and Demolition Waste Management in Beijing. Journal of Industrial Ecology, 14: 440-456. https://doi.org/10.1111/j.1530-9290.2010.00245.x
Huang, T., Shi, F., Tanikawa, H., Fei, J., & Han, J. (2013). Materials demand and environmental impact of buildings construction and demolition in China based on dynamic material flow analysis. Resources Conservation and Recycling, 72, 91-101.
Johnstone, I.M. (2001). Energy and mass flows of housing: a model and example. Building and Environment, 36, 27-41.
Kleemann, F., Lederer, J., Aschenbrenner, P., Rechberger, H., & Fellner, J. (2016). A method for determining buildings’ material composition prior to demolition. Building Research & Information, 44, 51 - 62.
Kohler, N., & Yang, W. (2007). Long-term management of building stocks. Building Research & Information, 35, 351 - 362.
Kohler, N., & Hassler, U. (2002). The building stock as a research object. Building Research & Information, 30, 226 - 236.
Krausmann, F., Wiedenhofer, D., Lauk, C., Haas, W., Tanikawa, H., Fishman, T., Miatto, A., Schandl, H., & Haberl, H. (2017). Global socioeconomic material stocks rise 23-fold over the 20th century and require half of annual resource use. Proceedings of the National Academy of Sciences, 114, 1880 - 1885.
Lanau, M., Liu, G., Kral, U., Wiedenhofer, D., Keijzer, E., Yu, C., & Ehlert, C. (2019). Taking stock of built environment stock studies: Progress and prospects. Environmental science & technology.
Lichtensteiger, T., Baccini, P., 2008. Exploration of urban stocks. J. Environ. Eng. Manage. 18, 41–48.
Lin, J., Cao, B., Cui, S., Wang, W., Bai, X., 2010. Evaluating the effectiveness of urban energy conservation and GHG mitigation measures: the case of Xiamen city, China. Energy Policy 38, 5123e5132.
Miatto, A., Schandl, H., & Tanikawa, H. (2017). How important are realistic building lifespan assumptions for material stock and demolition waste accounts. Resources Conservation and Recycling, 122, 143-154.
Müller, Daniel B. Stock dynamics for forecasting material flows. Case study for housing in The Netherlands. Netherlands. https://doi.org/10.1016/J.ECOLECON.2005.09.025
Ortlepp, R., & Schiller, G. (2015). 33 Mineral building material stock of buildings and infrastructures in Germany and flows as indicators for recycling potentials. HPFRCC-7..
Postma, T.J., & Liebl, F. (2005). How to improve scenario analysis as a strategic management tool. Journal of Molecular Spectroscopy.
Sandberg, N.H., Sartori, I., & Brattebø, H. (2014). Using a dynamic segmented model to examine future renovation activities in the Norwegian dwelling stock. Energy and Buildings, 82, 287-295.
Sartori, I., Bergsdal, H., Müller, D.B., & Brattebø, H. (2008). Towards modelling of construction, renovation and demolition activities: Norway's dwelling stock, 1900–2100. Building Research & Information, 36, 412 - 425.
Shi, F., Huang, T., Tanikawa, H., Han, J., Hashimoto, S., & Moriguchi, Y. (2012). Toward a Low Carbon–Dematerialization Society. Journal of Industrial Ecology, 16.
Shi, J., & Xu, Y. (2006). Estimation and forecasting of concrete debris amount in China. Resources Conservation and Recycling, 49, 147-158.
Spangenberg, J.H., 2002. Environmental space and the prism of sustainability: frameworks for indicators measuring sustainable development. Ecol. Indic. 2, 295–309.https://doi.org/10.1016/S1470-160X(02)00065-1.
Sprecher, B., Verhagen, T.J., Sauer, M.L., Baars, M., Heintz, J.P., & Fishman, T. (2021). Material intensity database for the Dutch building stock: Towards Big Data in material stock analysis. Journal of Industrial Ecology, 26, 272 - 280.
Tanikawa, H., & Hashimoto, S. (2009). Urban stock over time: spatial material stock analysis using 4d-GIS. Building Research & Information, 37, 483 - 502.
Tanikawa, H., Fishman, T., Okuoka, K., & Sugimoto, K. (2015). The Weight of Society Over Time and Space: A Comprehensive Account of the Construction Material Stock of Japan, 1945–2010. Journal of Industrial Ecology, 19.
Verbiest, P., van den Ven, P., 1997. Measurement of capital stock and consumption of fixed capital in the Netherlands. Statistics Netherlands.
Wiedenhofer, D., Steinberger, J. K., Eisenmenger, N., & Haas, W. (2015). Maintenance and expansion: modeling material stocks and flows for residential buildings and transportation networks in the EU25. Journal of Industrial Ecology, 19(4), 538-551.
Yang, W. 2006. Ke chi xu xing jian zhu cun liang yan jin mo xing yan jiu: yi zhong guo jian zhu cun liang wei li [Modeling the evolution of the Chinese building stock in a sustainable perspective]. Ph.D. thesis, Tianjin University, Tianjin, China.
Yang, W., & Kohler, N. (2008). Simulation of the evolution of the Chinese building and infrastructure stock. Building Research & Information, 36, 1 - 19.
小松幸夫(1992). 建物寿命の年齢別データによる推計に関する基礎的考察. 日本建築学会計画系論文報告集, 439(0), 91-99. doi;https://doi.org/10.3130/aijax.439.0_91
中華民國內政部戶政司全球資訊網。臺灣總人口數及未來推估。取自:https://www.ris.gov.tw/app/portal/346
中華民國內政部營建署。臺北市歷年拆除執照統計資料。取自:https://www.cpami.gov.tw/index.php?option=com_categorytable&view=categorytable&categoryid=155&Itemid=102
中華民國統計資訊網。平均每住宅面積:人口及住宅普查。取自:https://www.stat.gov.tw/cl.aspx?n=2748
內政部不動產資訊平台。平均每住宅人數:設有戶籍住宅之平均人口數。取自:https://pip.moi.gov.tw/V3/E/SCRE0303.aspx
張又升 (2002)。建築物生命週期二氧化碳減量評估。國立成功大學建築學系碩博士班博士論文,台南市。取自https://hdl.handle.net/11296/zwv5mh
梁芳綺 (2022)。整合臺灣廢棄物數據估算建築都市礦及預測二次建材資源產量一以臺北市與高雄市為例。國立成功大學環境工程學系碩士班碩士論文,台南市。取自https://hdl.handle.net/11296/f9235h
莊哲亞(2022)。都會區大宗建築物質存量之空間與時間分析:以臺北市為例。國立臺灣科技大學營建工程系碩士班碩士論文,臺北市。取自https://hdl.handle.net/11296/q74h7q
臺北市政府民政局中文網。臺北市總人口數:臺北市各行政區最新月份人口數及戶數。取自:https://ca.gov.taipei/News_Content.aspx?n=8693DC9620A1AABF&sms=D19E9582624D83CB&s=EE7D5719108F4026

無法下載圖示 全文公開日期 2024/08/25 (校內網路)
全文公開日期 2024/08/25 (校外網路)
全文公開日期 2024/08/25 (國家圖書館:臺灣博碩士論文系統)
QR CODE