簡易檢索 / 詳目顯示

研究生: 涂柏榕
Bo-rong Tu
論文名稱: 共閘極-共源極組態之射頻前端電路
Common Gate-Common Source Configuration RF Front-End Circuit
指導教授: 陳筱青
Hsiao-chin Chen
口試委員: 姚嘉瑜
Chia-yu Yao
邱弘緯
Hung-wei Chiu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 80
中文關鍵詞: 低雜訊放大器軟體定義無線電混頻器除頻器變壓器混合內插式壓控振盪器
外文關鍵詞: Low Noise Amplifier, Software Defined Radio, Mixer, Divider, Transformer hybrid interpolative VCO
相關次數: 點閱:311下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文使用UMC 90nm 1P9M CMOS製程,首先設計適用於GSM、GPS、WCDMA、IEEE 802.11b/g及UWB group-1、WiFi等通訊協定的低雜訊放大器,配合軟體定義無線電(Software Defined Radio,SDR)系統,軟體改變行動裝置使用的通訊協定。在此,低雜訊放大器設計在兩個頻段,分別為0.8 ~ 2.4 GHz(低頻段)與3 ~ 6 GHz(高頻段),包含了上述所提到的通訊系統。電路中利用共閘極與共源極架構消除雜訊,使用PMOS閘極控制偏壓當作頻段的選擇方式,低頻段與高頻段所消耗的功率分別為34.2 mW與34.6 mW,晶片面積為0.35 mm2。
接收機前端電路,包括低雜訊放大器、混頻器、除頻器。射頻前端電路接續低雜訊放大器的設計概念,配合兩組混頻器將射頻訊號降到基頻,並產生四種相位輸出,混頻器的本地振盪頻率由除頻器所提供。此除頻器為除二且輸出可以產生四種相位,使用除頻器輸入頻率為射頻訊號的兩倍,輸出即可供應兩組混頻器所需之本地振盪頻率。接收機前端電路分高、低頻段,消耗功率分別為58.5 mW與58.9 mW,晶片面積為0.6 mm2。
本論文中提出一種振盪器架構-變壓器混合內插式壓控振盪器,改善振盪器頻寬的限制,完成較寬頻的振盪器,此電路功率消耗為1.03 mW,晶片面積為0.5 mm2。


This thesis presents the design of a low noise amplifier for wireless communication standard applications including GSM, GPS, WCDMA, IEEE 802.11b/g, UWB group-1, and WiFi in UMC 90nm 9-metal-single-poly CMOS process. In software defined radio systems, the communication protocol to be used by in mobile devices is selected by software’s. Therefore, there are two frequency bands in the low noise amplifier we designed, which range from 0.8 GHz to 2.4 GHz(low frequency band) and from 3 GHz to 6 GHz(high frequency band), respectively. The band selection controlled by the gate bias voltage. The power consumption of the low and high frequency bands are 34.2 mW and 34.6 mW, respectively. The chip area is 0.35 mm2.
The receiver front-end circuit in this thesis includes a low noise amplifier, two mixers, and a frequency divider. The low noise amplifiers we designed is connected to two mixers, which down convert the RF signal to a medium frequency signal, and generate quadrature signals at the output. The local oscillation frequency for the mixers is provided by a divider, which is a quadrature output divide-by-two divider. The divider can provide LO signals to the mixers by injecting a signal that has twice the frequency the mixers need at the input of the divider. The receiver front-end circuit also has two modes, high and low frequency mode. The power consumption of two modes are 58.5 mW and 58.9 mW, respectively. The chip area is 0.6 mm2.
In addition, This thesis also presents the design of a new oscillator architecture: Transformer hybrid interpolative VCO. This VCO improves the oscillator bandwidth constraints, and completes broader band oscillators. The power consumption of the VCO is 1.03 mW, and a chip area of 0.5 mm2.

摘要 i Abstract ii 誌謝 iv 目錄 v 圖表目錄 viii 第一章 緒論 1 1.1 簡介 1 2.2 論文概要 3 參考文獻 4 第二章 增益峰值頻率可調COMS低雜訊放大器 5 2.1 相關介紹 5 2.2 電路架構 7 2.3 模擬結果 11 2.4 量測結果 15 2.5 晶片佈局 21 2.6 量測 22 2.6.1 實際量測環境 22 2.7 文獻比較 23 參考文獻 25 第三章 0.8-6 GHz多頻帶軟體定義無線電接收機前端電路設計 27 3.1 相關介紹 28 3.2 電路架構 31 3.2.1 低雜訊放大器 31 3.2.2 混頻器 33 3.2.3 除頻器 34 3.3 模擬 35 3.3.1 低頻段模擬結果 35 3.3.2 高頻段模擬結果 38 3.4 量測 41 3.4.1 低頻段量測結果 41 3.4.2 高頻段量測結果 44 3.3.1 量測環境 47 3.5 晶片佈局 50 3.6 文獻比較 50 3.7 靈敏度與雜訊指數比較 52 參考文獻 53 第四章 變壓器混合內插式壓控振盪器 55 4.1電路架構 57 4.2 模擬結果 58 4.3 規格表 60 4.4 晶片佈局 61 4.5量測 62 4.5.1 實際量測與環境 62 4.6 文獻比較 63 參考文獻 64 第五章 總結 65 作者簡介 66

CH1
[1] Anritsu company Inc., Must-have references for wireless communication, March, 2005.
[2] F. Bruccoleri, E. M. Klumperink, and B. Nauta, “Wide-band CMOSlow-noise amplifier exploiting thermal noise canceling,” IEEE J. SolidState Circuits, vol. 39, no. 2, pp. 275–282, Feb. 2004.
[3] A. Ismail and A. Abidi, “A 3-10-GHz low-noise amplifier with wideband LC-ladder matching network,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2269–2277, Dec. 2004.
[4] B. Razavi, RF Microelectornics, PRENTICE HALL PTR, 1998, pp.231-233.

CH2
[1] A. Ismail and A. Abidi, “A 3-10-GHz low-noise amplifier with wideband LC-ladder matching network,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2269–2277, Dec. 2004.
[2] F. Bruccoleri, E. M. Klumperink, and B. Nauta, “Wide-band CMOS low-noise amplifier exploiting thermal noise canceling,” IEEE J. Solid-State Circuits, vol. 39, no. 2, pp. 275–282, Feb. 2004.
[3] Bagheri, R.; Mirzaei, A.; Chehrazi, S.; Heidari, M. E.; Lee, M.; Mikhemar, M.; Tang, W.; Abidi, A. A.; “An 800-MHz–6-GHz Software-Defined Wireless Receiver in 90-nm CMOS” in IEEE JNL 2006 Dig.
[4] Sanghyun Woo, Woonyun Kim, Chang-Ho Lee, Kyutae Lim, Joy Laskar, “A 3.6mW differential common-gate CMOS LNA with positive-negative feedback,” Solid-State Circuits Conference - Digest of Technical Papers, Feb. 2009 .
[5] F. Bruccoleri, E. A. M. Klumperink, and B. Nauta, “Noise canceling in wideband CMOS LNA’s,” in IEEE ISSCC Dig. Tech. Papers, vol. 1, Feb. 2002, pp. 406–407.
[6] Sanghoon Joo, Tae-Young Choi, Byunghoo Jun, “A 2.4-GHz Resistive Feedback LNA in 0.13- m CMOS, “IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 44, NO. 11, NOVEMBER 2009.
[7] Vu Kien Dao, Quang Diep Bui, Chul Soon Par, “A Multi-band 900MHz/1.8GHz/5.2GHz LNA for Reconfigurable Radio,” Radio Frequency Integrated Circuits (RFIC) Symposium, 2007 IEEE
[8] Garuda, C et al. “A 3-5 GHz Fully Differential CMOS LNA with Dualgain mode for Wireless UWB Applications” IEEE Circuits and Systems 48th Midwest Symposium, Vol. 1 pp.790 – 793. Aug. 2005
[9] C.-W. Kim, M.-S. Kang, P. T. Anh, H.-T. Kim, and S.-G. Lee, “An ultrawideband CMOS low noise amplifier for 3–5 GHz UWB system,” IEEE J. Solid-State Circuits, vol. 40, no. 2, pp. 544–547, Feb. 2005.
[10] S. Iida, K. Tanaka, H. Suzuki, N. Yoshikawa, N. Shoji, B. Griffiths, D. Mellor, F. Hayden, I. Butler, and J. Chatwin, “A 3.1 to 5 GHz CMOS DSSS UWB transceiver for WPANs,” in IEEE ISSCC Tech. Dig., 2005, pp. 214–215
[11] Sanghoon Joo, Tae-Young Choi, Jae-Young Kim, Byunghoo Jung, “A 3-to-5 GHzUWB LNA with a Low-Power Balanced Active Balun,” Radio Frequency Integrated Circuits Symposium, 2009. RFIC 2009. IEEE .

CH3
[1] A. Ismail and A. Abidi, “A 3-10-GHz low-noise amplifier with wideband LC-ladder matching network,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2269–2277, Dec. 2004.
[2] F. Bruccoleri, E. M. Klumperink, and B. Nauta, “Wide-band CMOS low-noise amplifier exploiting thermal noise canceling,” IEEE J. Solid-State Circuits, vol. 39, no. 2, pp. 275–282, Feb. 2004.
[3] Bagheri, R.; Mirzaei, A.; Chehrazi, S.; Heidari, M. E.; Lee, M.; Mikhemar, M.; Tang, W.; Abidi, A. A.; “An 800-MHz–6-GHz Software-Defined Wireless Receiver in 90-nm CMOS” in IEEE JNL 2006 Dig.
[4] Camus, M., Butaye, B., Garcia, L., Sie, M., Pellat, B., Parra, T., “A 5.4mW 0.07mm2 2.4GHz Front-End Receiver in 90nm CMOS for IEEE 802.15.4 WPAN” ,Solid-State Circuits Conference, 2008. ISSCC 2008. Digest of Technical Papers. IEEE International, pp. 368-620. 2008.
[5] Koli, K., Kallioinen, S., Jussila, J., Sivonen, P., Parssinen, A., “A 900-MHz Direct Delta-Sigma Receiver in 65-nm CMOS,” Solid-State Circuits, IEEE Journal of, Dec. 2010.
[6] Hermann, C., Miinker, C., Klar, H., “A transformer based 1.8 – 1.9GHz low-IF receiver for 1V in 0.13μm CMOS, ” Radio Frequency Integrated Circuits (RFIC) Symposium, 2006.
[7] Hong Zhang, Guican Chen, Xiao Yang, “Fully Differential CMOS LNA and Down-Conversion Mixer for 3 to 5 GHz MB-OFDM UWB Receiver” ,RFIT2007-IEEE International Workshop on Radio-Frequency Integration Technology, Dec. 9-11, 2007, Singapor.
[8] Yun-A Shim, Jeongseon Lee, Sek-Kyun Han, Sang-Gug Lee, “Low Noise RF Front-End Receiver for 3~5 GHz UWB” , Advanced Communication Technology, 2008. ICACT 2008. 10th International Conference on.
[9] A. Bevilacqua, A. Vallese, C. Sandner, M. Tiebout, A. Gerosa, and A. Neviani, “A 0.13μm CMOS LNA with integrated balun and notch filter for 3-to-5GHz UWB receivers” ,in IEEE ISSCC Digest of Technical Papers, San Francisco, CA, Feb 2007, pp. 420–421.
[10] G. Sapone, G. Palmisano, “ A Low-Power 3-5-GHz UWB Down-Converter with
Resistive-Feedback LNA in a 90-nm CMOS Proces” Microwave Integrated Circuit Conference, 2008. EuMIC 2008. European.

CH4
[1] B. Razavi, design of analog CMOS Intergrated Circiuts, McGraw Hill, 2001.
[2] B. Razavi, RF Microelectornics, PRENTICE HALL PTR, 1998, pp.231-233.
[3] Michael Mark, Jan M. Rabaey, “A 13.2 mW 1.9 GHz interpolative BAW-based VCO for miniaturized RF frequency synthesis,” Circuits and Systems, 2009. ISCAS 2009.
[4] Shih-An Yu, Chin-Chun Meng, Shey-Shi Lu, “A 5.7 GHz interpolative VCO using InGaP/GaAs HBT technology,” IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 12, NO. 2, FEBRUARY 2002.
[5] Li, Z. and K. O. Kenneth, “A low-phase-noise and low-power multiband CMOS voltage-controlled oscillator,” IEEE J. Solid-State Circuits, Vol. 40, No. 6, 1296–1302, Jun. 2005.
[6] J. Kim, J. Plouchart, N. Zamdmer, M.Cherony, Y. Tan, M. Yoon, R. Trzcinski, M. Talbi, J. Safran, A. Ray, and L. Wagner, “A power optimized widely-tunable 5-GHZ monolithic VCO in a digital SOI CMOS technology on high resistivity substrate,” in Proc. ISLPED, Aug 2003, pp. 434---439.

無法下載圖示 全文公開日期 2016/01/28 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE