簡易檢索 / 詳目顯示

研究生: 李朝明
Alvin - Casandra
論文名稱: 離子型界面活性劑之吸附動力學研究
The Adsorption Kinetic of Ionic Surfactants
指導教授: 林析右
Shi-Yow Lin
口試委員: 張鑑祥
Chien-Hsiang Chang
劉志成
Jhy-Chern Liu
陳立仁
Li-Jen Chen
楊明偉
Ming-Wei Yang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 96
中文關鍵詞: 吸附動力學離子型界面活性劑
外文關鍵詞: Adsorption kinetics, Ionic surfactant
相關次數: 點閱:345下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文探討兩個議題:離子型界劑之吸附動力學和起始逼近法(short-time approximation method)之適用條件。離子型界劑吸附動力學的研究藉著使用懸掛氣泡影像數位化測量儀測量正癸酸與正十二烷胺水溶液之動態表面張力,並將實驗所測得的動態張力數據與部分解離之離子型界劑的理論動態表面張力曲線比較,以探討離子型界劑吸附至氣-液界面的吸附動力學。文獻上雖已有論文提出離子型界面活性劑之吸附等溫線模型,但僅有少數文獻將溶液中之靜電荷作用力或在氣-液界面附近形成之電雙層對吸、脫附程序作用之效應,導入動態模型中。
起始逼近法(short-time approximation method)是一廣為應用的簡易方法,用於決定界劑之吸附動力機構和估計界劑之擴散係數。方法簡單方便,但其適用條件與基本假設卻未曾被詳細討論。本論文藉解析動態表面張力曲線,深入探討起始逼近法之假設和適用條件。


This dissertation focusses on two general system of interest – The adsorption kinetics of ionic surfactant and an examination on the applicability of the short-time approximation method. First, the adsorption kinetics of ionic surfactant (decanoic acid and dodeyclamine) was examined. Dynamic and equilibrium surface tensions (ST) were measured using a video-enhanced pendant bubble tensiometer. The equilibrium ST data and the complete ST relaxation profiles were compared with theoretical profiles predicted by both non-ionic and ionic models. The quasi-equilibrium approach was used in the ionic model to describe the electric field in the electrical double layer. The adsorption of decanoic acid onto the air-water interface was determined to be diffusion controlled with diffusivity of 5.5×10-6 cm2/s. In the case of dodecylamine, it has a tendency to adsorb onto solid surfaces, including the quartz cell and stainless-steel needle used in the pendant bubble system. Two modifications on the pendant bubble system and methodology were proposed: the implementation of a pumping system and the use of a coated quartz cell instead of a normal quartz cell. These modifications minimized the error in the ST measurement of aqueous dodecylamine solutions. The fitted theoretical profiles produced a diffusivity value of 0.9 - 4.0×10-6 cm2/s, which is significantly lower than the diffusivity calculated using the Wilke-Chang equation, which was D = 5.6×10-6 cm2/s. Therefore, it could be concluded that in the low surface pressure regime, the controlling mechanism of the dodecylamine adsorption process is of mixed diffusive-kinetic control.
The short-time approximation method is known as a simple way to determine the adsorption mechanisms and to estimate the surfactant diffusivity by simply linearly fitting experimental dynamic ST data. Despite its simplicity, the short-time approximation method should be validly applied only over a very specific range of time intervals or surface pressures. Therefore, general criteria for the applicability of this method and for error evaluation in diffusivity estimations is fundamental. A theoretical numerical simulation of the short-time approximation method was conducted, and general benchmarks for its accurate utilization were investigated. Simple rules were developed in terms of limiting surface pressure and dimensionless time as a function of dimensionless surfactant concentration. For values greater than the limiting conditions, the dynamic ST curve deviates from the short-time approximation straight line, and thus, the corresponding linear fitting could lead to significant errors in evaluating the diffusivity. The simple criteria proposed in this study thus define the range of applicability for the short-time approximation method.

摘要 Abstract Acknowledgements Table of Contents List of figures List of tables Chapter 1 – Introduction 1.1 Objectives 1.2 Outline Chapter 2 –Literature Review 2.1 Surfactant 2.2 The classification of surfactant 2.2.1 Anionic surfactant 2.2.2 Cationic surfactant 2.2.3 Nonionic surfactant 2.2.4 Zwitterionic surfactant 2.3 Surface tension 2.4 Why surfactant reduce the surface tension? 2.5 The application of surfactants 2.6 How to measure surface tension? 2.7 Surface Tension Measurement Method 2.7.1 Wilhelmy plate and du-Nouy ring 2.7.2 Drop weight/volume method 2.7.3 Maximum bubble pressure method 2.7.4 Pendant Bubble/Drop method 2.8 Young-Laplace equation 2.9 Pendant Bubble apparatus Chapter 3 –Theoretical Framework 3.1 Surfactant mass transfer 3.2 Modified Ward-Tordai equation 3.3 Adsorption-desorption equation 3.4 Numerical solution Chapter 4 –Adsorption Kinetics of the Ionic Surfactant Decanoic Acid 4.1 Background and Introduction 4.2 Materials 4.3 Experimental procedure 4.4 Result 4.4.1 Surface tension 4.4.2 Model determination 4.4.3 Diffusion-controlled adsorption of decanoic acid 4.4.4 Dynamic surface properties and surface potential 4.4.5 Dissociation degree of decanoic acid 4.4.6 Critical K value for ionic surfactant 4.4.7 Equilibrium surface potential Chapter 5 –Adsorption Kinetics of Dodecylamine 5.1 Background and Introduction 5.2 Materials 5.3 Experimental procedure 5.3.1 Modified pendant bubble apparatus 5.3.2 Modified experimental procedure 5.3.3 Ellipsometer 5.4 Result 5.4.1 Quartz cell effect on the surface tension measurement 5.4.2 Needle effect on the surface tension measurement 5.4.3 Multilayer thickness 5.4.4 Dissociation degree of dodecylamine 5.4.5 Surface tension 5.4.6 Model determination 5.4.7 Diffusion-controlled adsorption of dodecylamine 5.4.8 Diffusion-controlled adsorption of dodecylamine - low surface pressure 5.4.9 Mixed-controlled adsorption of dodecylamine - low surface pressure 5.4.10 The effect of salt concentration on the adsorption of dodecylamine Chapter 6 –A Study on the Method of Short-Time Approximation 6.1 Background and Introduction 6.2 Short-time linear approximation method 6.3 Short-time approximation theoretical examination results 6.4 The effect of surfactant concentration on short-time approximation 6.5 Criteria for short-time approximation 6.6 The effect of surfactant activity (a) on short-time approximation 6.7 Criteria comparison with literature 6.8 The effect of interfacial curvature 6.9 An examination on the interfacial curvature effect on short-time approximation 6.10 An Examination on the three assumptions used in short-time approximation Chapter 7 –Conclusions and Future Work 7.1 Conclusion 7.2 Future work References

[1] B.E. Chistyakov, Theory and practical application aspects of surfactants, in: Surfactants Chem. Interfacial Prop. Appl., 2001: pp. 511–618.
[2] Acmite Market Intelligence, Market Report: Global Surfactant Market, 2013.
[3] S.S. Dukhin, R. Miller, G. Kretzschmar, On the theory of adsorption kinetics of ionic surfactants at fluid interfaces, Colloid Polym. Sci. 269 (1991) 923–928.
[4] S.Y. Lin, K. McKeigue, C. Maldarelli, Diffusion-Controlled Surfactant Adsorption Studied by Pendant Drop Digitization, AIChE J. 36 (1990) 1785-1795.
[5] S.Y. Lin, K. McKeigue, C. Maldarelli, Diffusion-Limited Interpretation of the Induction Period in the Relaxation in Surface Tension Due to the Adsorption of Straight Chain, Small Polar Group Surfactants: Theory and Experiment, Langmuir. 7 (1991) 1055-1066.
[6] S.S. Dukhin, R. Miller, G. Kretzschmar, On the theory of adsorption kinetics of ionic surfactants at fluid interfaces, Colloid. Polym. Sci. 261 (1983) 335-339.
[7] R. Miller, S.S. Dukhin, G. Kretzschmar, On the theory of adsorption kinetics of ionic surfactants at fluid interfaces, Colloid. Polym. Sci. 263 (1985) 420-423.
[8] D. Myers, Surfaces, Interfaces, and Colloids: Principles and Applications 2nd edition, John Wiley and Sons, New York, 1999.
[9] C. Tanford, The Hydrophobic Effect, John Wiley and Sons, New York, 1973.
[10] B. Jonsson, B. Lindman, K. Holmberg, B. Kronberg, Surfactans and polymers in aqueous solution, John Wiley and Sons, London, 1998.
[11] P. Lambert, Surface Tension in Microsystems, Springer, Berlin, 2013.
[12] K.J. Stebe, S.Y. Lin, Dynamic surface tension and surfactant mass transfer kinetics : measurement techniques and analysis. In H.S. Nalwa (Ed), Handbook of surfaces and interfaces of material: Surface and interface analysis and properties, Academic Press, San Diego, 2001
[13] R. Defay, J.R. Hommelen, I. Measurement of dynamic surface tension of aqueous solutions by the oscillating jet method, J. Colloid. Sci. 13 (1958) 553-564.
[14] R.L. Bendure, Dynamic surface tension determination with the maximum bubble pressure method, J. Colloid. Interf. Sci. 35 (1971) 238-248.
[15] J. Kloubek, Measurement of the dynamic surface tension by the maximum bubble pressure method II. Calculation of the effective age of the solution-air interface, J. Colloid. Interf. Sci. 41 (1972) 1-6.
[16] V.B. Fainerman, A.V. Makievski, R. Miller, The measurement of dynamic surface tensions of highly viscous liquids by the maximum bubble pressure method, Colloid. Surf. A 75 (1993) 229-235.
[17] X. Zhang, M.T. Harris, O.A. Basaran, Measurement of dynamic surface tension by a growing drop technique, J. Colloid. Interf. Sci. 168 (1994) 47-60.
[18] J. van Havenbergh, P. Joos, The dynamic surface tension in a free falling film, J. Colloid. Interf. Sci. 95 (1983) 172-182.
[19] C. Jho, R. Burke, Drop weight technique for the measurement of dynamic surface tension, J. Colloid. Interf. Sci. 95 (1983) 61-71.
[20] A.V. Makievski, R. Miller, G. Czichocki, V.B. Fainerman, Adsorption behaviour of oxyethylated anionic surfactants 2. Adsorption kinetics, Colloid. Surf. A 133 (1998) 313-326.
[21] S.A. Zholob, V.B. Fainerman, R. Miller, Dynamic adsorption behavior of polyethylene glycol octylphenyl ethers at the water/oil interface studied by a dynamic drop volume technique, J. Colloid. Interf. Sci. 186 (1997) 146-159.
[22] A. Passerone, L. Liggieri, N. Rando, F. Ravera, E. Ricci, A new experimental method for the measurement of the interfacial tension between immiscible fluids at zero bond number, J. Colloid. Interf. Sci. 146 (1991) 152-162.
[23] R. Defay, J.R. Hommelen, II. Measurement of dynamic surface tensions of aqueous solutions by the falling meniscus method, J. Colloid. Sci. 14 (1959) 401-410.
[24] J. Lucassen, M. van den Tempel, Dynamic measurements of dilational properties of a liquid interface, Chem. Eng. Sci. 27 (1972) 1283-1291.
[25] J. Lucassen, M. van den Tempel, Longitudinal waves on visco-elastic surfaces, J. Colloid. Interf. Sci. 41 (1972) 491-498.
[26] C.J. Hsu, R.E. Apfel, A technique for measuring interfacial tension by quadrupole oscillation of drops, J. Colloid. Interf. Sci. 107 (1985) 467-476.
[27] R. van den Bogaert, P. Joos, Dynamic surface tensions of sodium myristate solutions, J. Phys. Chem. 83 (1979) 2244-2248.
[28] P. Joos, J. van Hunsel, Spreading of aqueous surfactant solutions on organic liquids, J. Colloid. Interf. Sci. 106 (1985) 161-167.
[29] H. Lange, Dynamic surface tension of detergent solution at constant and variable surface area, J. Colloid. Sci. 20 (1965) 50-61.
[30] C. Huh, R.L. Reed, A method for estimating interfacial tensions and contact angles from sessile and pendant drop shapes, J. Colloid. Interf. Sci. 91 (1983) 472-484.
[31] C.A. MacLeod, C.J. Radke, Charge Effects in the Transient Adsorption of Ionic Surfactants at Fluid Interfaces, Langmuir. 10 (1994) 3555-3566.
[32] A. Fick, Ueber Diffusion (in Germany), Ann. der Physik. 94 (1885) 59-86.
[33] A.F.H. Ward, L. Tordai, Time-Dependence of Boundary Tensions of Solutions I. The Role of Diffusion in Time-Effects, J. Chem. Phys. 14 (1946) 453-461.
[34] S.Y. Lin, K. McKeigue, C. Maldarelli, Effect of Cohesive Energies between Adsorbed Molecules on Surfactant Exchange Processes: Shifting from Diffusion Control for Adsorption to Kinetic Diffusive Control for Re-equilibration, Langmuir 10 (1994) 3442-3448.
[35] E.H. Lucassen-Reynders, M.van den Tempel, Surface Equation of State for Adsorbed Surfactants, Proc. Int. Cong. Surface Activiy, Vol. B, Gordon and Breach Science Publishers, New York, 1964
[36] E.J.Y. Verwey, J.Th.G. Overbeek, Theory of Stability of Lyophobic Colloids. Elsevier, Amsterdam, 1948
[37] M. Gouy, Sur la constitution de la charge électrique à la surface d'un électrolyte, J. Phys. Theor. Appl. 9 (1910) 457-468.
[38] D.L.Chapman, A contribution to the theory of electrocapillarity, Philos. Mag. 25 (1913) 475-481.
[39] K.L. Yang, S. Yiacoumi, C. Tsouris, Electrical Double-Layer Formation: Dekker Encyclopedia of Nanoscience and Nanotechnology, Marcel Dekker, New York, 2004
[40] J. Ferri, K.J. Stebe, The Dynamic Adsorption of Charged Amphiphiles: The Evolution of the Surface Concentration, Surface Potential, and Surface Tension, J. Colloid. Interface. Sci. 219 (1999) 282-297.
[41] S.S. Datwani, K.J. Stebe, Surface Tension of an Anionic Surfactant: Equilibrium, Dynamics, and Analysis for Aerosol-OT, Langmuir. 17 (2001) 4287-4296.
[42] C. Stubenrauch, V.B. Fainerman, E.V. Aksenenko, R. Miller, Adsorption Behavior and Dilational Rheology of the Cationic Alkyl Trimethylammonium Bromides at the Water/Air Interface, J. Phys. Chem. B. 109 (2005) 1505-1509.
[43] N. Mucic, N.M. Kovalchuk, V. Pradines, A. Javadi, E.V. Aksenenko, J. Kragel, R. Miller, Dynamic properties of CnTAB adsorption layers at the water/oil interface, Colloids. Surf. A. 441 (2014) 825-830.
[44] Y.J. Jiang, T. Geng, Q.X. Li, G.J. Li, H.B. Ju, Equilibrium and dynamic surface tension properties of salt-free catanionic surfactants with different hydrocarbon chain lengths, J. Molecular. Liq. 204 (2015) 126-131.
[45] F. Giusti, J.L. Popot, C. Tribet, Well-Defined Critical Association Concentration and Rapid Adsorption at the Air/Water Interface of a Short Amphiphilic Polymer, Amphipol A8-35: A Study by Förster Resonance Energy Transfer and Dynamic Surface Tension Measurements, Langmuir. 28 (2012) 10372-10380.
[46] H. Ritacco, D. Langevin, H. Diamant, D. Andelman, Dynamic Surface Tension of Aqueous Solutions of Ionic Surfactants: Role of Electrostatics, Langmuir. 27 (2011) 1009-1014.
[47] R. Jiang, Y.H. Ma, J.X. Zhao, Adsorption dynamics of binary mixture of Gemini surfactant and opposite-charged conventional surfactant in aqueous solution, J. Colloid. Interface. Sci. 297 (2006) 412-418.
[48] V.G. Babak, J. Desbrieres, Dynamic surface tension and dilational viscoelasticity of adsorption layers of alkylated chitosans and surfactant–chitosan complexes, Colloid. Polym. Sci. 284 (2006) 745-754.
[49] N. Aydogan, N.L. Abbott, Effect of Electrolyte Concentration on Interfacial and Bulk Solution Properties of Ferrocenyl Surfactants with Anionic Headgroups, Langmuir. 18 (2002) 7826-7830.
[50] I.U. Vakarelski, C.D. Dushkin, Effect of the counterions on the surface properties of surfactant solutions: kinetics of the surface tension and surface potential, Colloids. Surf. A. 163 (2000) 177-190.
[51] A. Bonfillon, F. Sicoli, D. Langevin, Dynamic Surface Tension of Ionic Surfactant Solutions, J. Colloid. Interface. Sci. 168 (1994) 497-504.
[52] J.T. Davies, E.K. Rideal, Interfacial Phenomena, Academic Press, New York, 1963
[53] P.M. Vlahovksa, K.D. Danov, A. Mehreteab, G. Broze, Adsorption Kinetics of Ionic Surfactants with Detailed Account for the Electrostatic Interactions, J. Colloid and Interface. Sci. 192 (1997) 194-206.
[54] Wikipedia Foundation, Decanoic acid (2016, December 4). Retrived from https://en.wikipedia.org/wiki/Decanoic_acid
[55] K. Lunkenheimer, W. Barzyk, R. Hirte, R. Rudert, Adsorption Properties of Soluble, Surface-Chemically Pure n-Alkanoic Acids at the Air/Water Interface and the Relationship to Insoluble Monolayer and Crystal Structure Properties, Langmuir. 19 (2003) 6140-6150.
[56] R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena, John Wiley and Sons, New York, 1960, pp. 528-531.
[57] E. Jarek, T. Jasinski, W. Barzyk, P. Warszynski, The pH regulated surface activity of alkanoic acid, Colloids. Surf. A. 354 (2010) 188-196.
[58] J.M. Bloch, W.B. Yun, Condensation of monovalent and divalent metal ions on a Langmuir monolayer, Physical Review A. 41 (1990) 844-862.
[59] D.J. Ahn, E.I. Franses, Interactions of charged Langmuir monolayers with dissolved ions, J. Chemical Physics. 95 (1991) 8486-8493.
[60] H. Nakahara, O. Shibata, Y. Moroi, Examination of Surface Adsorption of Sodium Chloride and Sodium Dodecyl Sulfate by Surface Potential Measurement at the Air/Solution Interface, Langmuir, 21 (2005) 9020-9022.
[61] G. Domagk, Eine neue Klasse von Desinfektionsmitteln. Dtsch. Med. Wochenschr. 61 (1935) 829-832.
[62] W.Y. Liu, M. Pawlik, M. Holuszko, The role of colloidal precipitates in the interfacial behavior of alkylamines at gas–liquid and gas–liquid–solid interfaces. Minerals Eng. 72 (2015) 47-56.
[63] E. Guzman, E. Santini, A. Benedetti, F. Ravera, M. Ferrari, L. Liggieri, Surfactant induced complex formation and their effects on the interfacial properties of seawater. Colloid. Surf. B. 123 (2014) 701-709.
[64] M. Rojewska, K. Prochaska, A. Olejnik, J. Rychlik, Adsorption properties of biologically active derivatives of quaternaryammonium surfactants and their mixtures at aqueous/air interface II. Dynamics of adsorption, micelles dissociation and cytotoxicity of QDLS. Colloid. Surf. B. 119 (2014) 154-161.
[65] D. Arabadzhieva, P. Tchoukov, B. Soklev, E. Mileva, Interfacial layer properties and foam film drainage kinetics of aqueous solutions of hexadecyltrimethylammonium chloride. Colloid. Surf. A. 460 (2014) 28-37.
[66] L.F. Zhi, Q.X. Li, Y.L. Li, Y.Q. Sun, Self-aggregation and antimicrobial activity of saccharide-cationicsurfactants. Colloid. Surf. A. 456 (2014) 231-237.
[67] L.F. Zhi, Q.X. Li, Y.L. Li, Y.B. Song, Adsorption and aggregation properties of novel star-shaped gluconamide-type cationic surfactants in aqueous solution. Colloid. Polym. Sci. 292 (2014) 1041-1050.
[68] M. Manousakis, A. Avranas, Dynamic surface tension studies of mixtures of hydroxypropyl-methylcellulose with the double chain cationic surfactant didodecyldimethyl-ammonium bromide and ditetradecyldimethylammonium bromide. J. Colloid. Interface. Sci. 402 (2013) 237-245.
[69] S. Manoli, A. Avranas, Aqueous solutions of the double chain cationic surfactants didodecyldimethylammonium bromide and ditetradecyldimethylammonium bromide with Pluronic F68:Dynamic surface tension measurements. Colloid. Surf. A. 436 (2013) 1060-1068.
[70] J.C. Lim, E.K. Kang, J.M. Park, H.C. Kang, B.M. Lee, Syntheses and surface active properties of cationic surfactants having multi ammonium and hydroxyl groups. J. Ind. Eng. Chem. 18 (2012) 1406-1411.
[71] K. Dopierala, M. Rojewska, K. Prochaska, Surface and micellar properties of the mixtures containing esterquats. Fluid. Phase. Equ. 325 (2012) 35-40..
[72] N. Lozano, A. Pinazo, L. Perez, R. Pons, Dynamic Properties of Cationic Diacyl-Glycerol-Arginine-Based Surfactant/Phospholipid Mixtures at the Air/Water Interface. Langmuir. 26 (2010) 2559-2566.
[73] A. Niecikowska, J. Zawala, R. Miller, K. Malysa, Dynamic adsorption layer formation and time of bubble attachment to a mica surface in solutions of cationic surfactants (CnTABr). Colloid. Surf. A. 365 (2010) 14-20.
[74] N. Lozano, A. Pinazo, R. Pons, L. Perez, E.I. Franses, Surface tension and adsorption behavior of mixtures of diacyl glycerol arginine-based surfactants with DPPC and DMPC phospholipids. Colloid. Surf. B. 74 (2009) 67-74.
[75] I. Tucker, J. Penfold, R.K. Thomas, I. Grillo, J.G. Barker, D.F.R. Mildner, The Surface and Solution Properties of Dihexadecyl Dimethylammonium Bromide. Langmuir. 24 (2008) 6509-6520.
[76] K. Dopierala, K. Prochaska, The effect of molecular structure on the surface properties of selected quaternary ammonium salts. J. Colloid. Interface. Sci. 321 (2008) 220-226.
[77] F.F. Lu, S.L. Yuan, L.Q. Zheng, N. Li, L.Z. Wu, C.H. Tung, T. Inoue, Abnormal behaviors of 3-nonylphenoxy-2-hydroxyl-propyltrimethyl-ammonium bromide surfactant at the interface of air–alkaline aqueous solution. Colloid. Surf. A. 305 (2007) 132-137.
[78] F. Ravera, E. Santini, G. Loglio, M. Ferrari, L. Liggieri, Effect of Nanoparticles on the Interfacial Properties of Liquid/Liquid and Liquid/Air Surface Layers. J. Phys. Chem. B. 110 (2006) 19543-19551.
[79] F.F. Lu, L.Q. Zheng, Y.A. Gao, G.Z. Li, Z.H. Tong, Effect of Sodium Halide on Dynamic Surface Tension of a Cationic Surfactant. Chinese. J. Chem. 23 (2005) 957-962.
[80] N.P. Bansal, R.H. Doremus, Handbook of Glass Properties. Academic Press, Inc. 1986, Florida.
[81] H. Scholze, Glass: Nature, Structure, and Properties. Springer-Verlag. 1991, New York.
[82] R.K. Iler, The Chemistry of Silica, Wiley, New York, 1979.
[83] X.M. Wang, J. Liu, H. Du, J.D. Miller, States of Adsorbed Dodecyl Amine and Water at a Silica Surface As Revealed by Vibrational Spectroscopy. Langmuir. 26 (2010) 3407-3414.
[84] Glentham Life Science, Dodecylamine (2016, December 4). Retrived from https://www.glentham.com/en/products/product/GK6795/
[85] Y.B. Liou, R.Y. Tsay, Adsorption of PEO-PEO-PEO triblock copolymers on a gold surface, J. Taiwan. Ins. Chem. Eng. 42 (2011) 533-540.
[86] R. Miller, A. V. Makievski, V.B. Fainerman, Dynamics of adsorption from solutions, in: Surfactants Chem. Interfacial Prop. Appl., 2001: pp. 287–399.
[87] R. Defay, J.R. Hommelen, III. The Importance of Diffusion in The Adsorption Process of Some Alcohols and Acids in Dilute Aqueous Solutions, J. Colloid Sci. 14 (1959) 411–418.
[88] R.S. Hansen, T.C. Wallace, The Kinetics of Adsorption of Organic Acids at the Water-Air Interface, J. Phys. Chem. 63 (1959) 1085–1092.
[89] C.D. Ampatzidis, E.-M. a. Varka, T.D. Karapantsios, Dynamic surface properties of eco-friendly phenylalanine glycerol ether surfactants at the W/A interface, Colloids Surfaces A Physicochem. Eng. Asp. 441 (2014) 872–879.
[90] M. Eftekhardadkhah, P. Reynders, G. Øye, Dynamic adsorption of water soluble crude oil components at air bubbles, Chem. Eng. Sci. 101 (2013) 359–365.
[91] S. Ferdous, M. a. Ioannidis, D. Henneke, Adsorption kinetics of alkanethiol-capped gold nanoparticles at the hexane–water interface, J. Nanoparticle Res. 13 (2011) 6579–6589.
[92] T.D. Gurkov, Adsorption kinetics under the influence of barriers at the subsurface layer, Colloid Polym. Sci. 289 (2011) 1905–1915.
[93] K. Sakai, S. Umezawa, M. Tamura, Y. Takamatsu, K. Tsuchiya, K. Torigoe, et al., Adsorption and micellization behavior of novel gluconamide-type gemini surfactants., J. Colloid Interface Sci. 318 (2008) 440–448.
[94] A.M. Díez-Pascual, A. Compostizo, A. Crespo-Colín, R.G. Rubio, R. Miller, Adsorption of water-soluble polymers with surfactant character. Adsorption kinetics and equilibrium properties, J. Colloid Interface Sci. 307 (2007) 398–404.
[95] T. Yoshimura, A. Sakato, K. Tsuchiya, T. Ohkubo, H. Sakai, M. Abe, Adsorption and aggregation properties of amino acid-based N-alkyl cysteine monomeric and N,N’-dialkyl cystine gemini surfactants, J. Colloid Interface Sci. 308 (2007) 466–473.
[96] Y.A. Gao, W.G. Hou, Z.N. Wang, G.Z. Li, B.X. Han, G.Y. Zhang, Dynamic Surface Tensions of Fluorous Surfactant Solutions, Chinese J. Chem. 23 (2005) 362–366.
[97] C. Delgado, M.D. Merchán, M.M. Velázquez, S. Pegiadou, L. Pérez, M. Rosa Infante, The adsorption kinetics of 1-N-l-tryptophan–glycerol-ether surfactants at the air–liquid interface: effect of surfactant concentration and alkyl chain length, Colloids Surfaces A Physicochem. Eng. Asp. 233 (2004) 137–144.
[98] J.M. Rodriguez Patino, C. Carrera Sanchez, S.E. Molina Ortiz, R. Rodriguez Nino, C. Anon, Adsorption of Soy Globulin Films at the Air - Water Interface, Ind. Eng. Chem. Res. 43 (2004) 1681–1689.
[99] U.R.M. Kjellin, J. Reimer, P. Hansson, An investigation of dynamic surface tension, critical micelle concentration, and aggregation number of three nonionic surfactants using NMR, time-resolved fluorescence quenching, and maximum bubble pressure tensiometry, J. Colloid Interface Sci. 262 (2003) 506–515.
[100] E. Alami, K. Holmberg, J. Eastoe, Adsorption properties of novel gemini surfactants with nonidentical head groups, J. Colloid Interface Sci. 247 (2002) 447–455.
[101] R. Rodriguez Nino, J.M. Rodriguez Patino, Effect of the Aqueous Phase Composition on the Adsorption of Bovine Serum Albumin to the Air - Water Interface, Ind. Eng. Chem. Res. 41 (2002) 1489–1495.
[102] M.G. Munoz, F. Monroy, F. Ortega, R.G. Rubio, D. Langevin, Monolayers of Symmetric Triblock Copolymers at the Air-Water Interface. 2. Adsorption Kinetics, Langmuir. 16 (2000) 1094–1101.
[103] B.V Zhmud, F. Tiberg, J. Kizling, Dynamic Surface Tension in Concentrated Solutions of CnEm Surfactants: A Comparison between the Theory and Experiment, Langmuir. 16 (2000) 2557–2565.
[104] N. Wu, J. Dai, F. Micale, Dynamic Surface Tension Measurement with a Dynamic Wilhelmy Plate Technique, J. Colloid Interface Sci. 215 (1999) 258–269.
[105] J. Eastoe, J.S. Dalton, R.K. Heenan, Dynamic Surface Tensions and Micelle Structures of Dichained Phosphatidylcholine Surfactant Solutions, Langmuir. 14 (1998) 5719–5724.
[106] M. Ferrari, L. Liggieri, F. Ravera, Adsorption Properties of C10E8 at the Water-Hexane Interface, J. Phys. Chem. B. 102 (1998) 10521–10527.
[107] E.V. Aksenenko, A.V. Makievski, R. Miller, V.B. Fainerman, Dynamic surface tension of aqueous alkyl dimethyl phosphine oxide solutions. Effect of the alkyl chain length, Colloids Surfaces A Physicochem. Eng. Asp. 143 (1998) 311–321.
[108] J. Eastoe, J.S. Dalton, P.G.A. Rogueda, E.R. Crooks, A.R. Pitt, E.A. Simister, Dynamic Surface Tensions of Nonionic Surfactant Solutions, J. Colloid Interface Sci. 188 (1997) 423–430.
[109] R. Wüstneck, J. Krägel, R. Miller, V.B. Fainerman, P.J. Wilde, D.K. Sarker, et al., Dynamic surface tension and adsorption properties of β-casein and β-lactoglobulin, Food Hydrocoll. 10 (1996) 395–405.
[110] J. Li, R. Miller, H. Mohwald, Characterisation of phospholipid layers at liquid interfaces.1. Dynamics of adsorption of phospholipids at the chloroform/water interface, Colloids Surfaces A Physicochem. Eng. Asp. 114 (1996) 113–121.
[111] V.B. Fainerman, R. Miller, Dynamic Surface Tension Measurements in Sub-millisecond Range, J. Colloid Interface Sci. 175 (1995) 118–121.
[112] G. Geeraerts, P. Joos, F. Villé, Dynamic surface tensions and dynamic surface potentials of aqueous solutions of a cationic surface active electrolyte, Colloids Surfaces A Physicochem. Eng. Asp. 95 (1995) 281–291.
[113] V.B. Fainerman, A.V. Makievski, P. Joos, Adsorption kinetics of octylphenyl ethers of poly(ethylene glycol)s on the solution-air interface, Colloids Surfaces A Physicochem. Eng. Asp. 90 (1994) 213–224.
[114] V.B. Fainerman, A. V. Makievski, R. Miller, The analysis of dynamic surface tension of sodium alkyl sulphate solutions, based on asymptotic equations of adsorption kinetic theory, Colloids Surfaces A Physicochem. Eng. Asp. 87 (1994) 61–75.
[115] J.P. Fang, P. Joos, The dynamic surface tension of SDS-dodecanol mixtures 1. The submicellar systems, Colloids and Surfaces. 65 (1992) 113–120.
[116] D.V. Dass, H.J. Van Enckevort, A.G. Langdon, Protein Adsorption by Colloidal Particles, J. Colloid Interface Sci. 116 (1987) 523–531.
[117] R. van den Bogaert, P. Joos, Diffusion-Controlled Adsorption Kinetics for a Mixture of Surface Acthe Agents at the Solution-Air Interface, J. Phys. Chem. (1980) 190–194.
[118] P. Joos, E. Rillaerts, Theory on the Determination of the Dynamic Surface Tension with the Drop Volume and Maximum Bubble Pressure Methods, J. Colloid Interface Sci. 79 (1981) 96–100.
[119] M. Blank, B.B. Lee, J.S. Britten, Adsorption kinetics of ovalbumin monolayers, J. Colloid Interface Sci. 50 (1975) 215–222.
[120] G.L. Gaines, G.W. Bender, Surface Concentration of a Styrene -Dimethylsiloxane Block Copolymer in Mixtures with Polystyrene, Macromolecules. 5 (1972) 82–86.

QR CODE