簡易檢索 / 詳目顯示

研究生: 吳起承
Chi-Cheng Wu
論文名稱: 以溶膠凝膠法製備二氧化矽於鐵氟龍之輻射冷卻材料
Preparation of SiO2 by sol-gel method on the Polytetrafluoroethylene for radiative cooling material
指導教授: 施劭儒
Shao-Ju Shih
口試委員: 王丞浩
Wang-Chen Hao
鄒年棣
Nien-Ti Tsou
周育任
yu-jen chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 81
中文關鍵詞: 溶膠凝膠法二氧化矽輻射冷卻
外文關鍵詞: Sol-gel method, silica, radiative cooling
相關次數: 點閱:288下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著科技不斷的創新與發展,使人們享有便利的生活,同時背後所付出的負擔卻是對於環境的浩劫。自18世紀工業革命以來,人類排放過多的溫室氣體,溫室氣體的產生會影響到地表溫度無法順利排熱至外太空,進而引發地表溫度日益增高的情況。為了改善此問題,可以透過二氧化矽在紅外線大氣窗口區域(8-13 μm)擁有很高的吸收與發射性質來解決全球暖化的問題發生。
本研究使用溶膠凝膠法的方式合成二氧化矽,使用此方式可以減少粒徑大小的標準差,避免造成不同顆粒大小有不同的輻射冷卻效果,經由改變pH值、溶劑比例、濃度的改變來控制粒徑大小與型貌的變化,並且比較不同變因之間對於吸收紅外線輻射能力的影響,最終於pH=11、100 ml 酒精與100 ml水的條件下合成0.1M 濃度的二氧化矽有最高的吸收度,因此,選擇此粉體與鐵氟龍膜進行混合,分別比較有無添加耦合劑過後的二氧化矽與表面覆蓋之間的關係,最後再測量其日照輻射冷卻的能力,其結果顯示可以於最高溫度時有效降低3.6°C。
各階段的實驗結果分別利用X光繞射儀(X-ray diffractometer, XRD)觀察粉體相組成,利用聚焦離子束顯微鏡 (Focus Ion Beam, FIB)探討顆粒表面並計算顆粒大小,使用傅立葉紅外線光譜(Fourier transform infrared spectroscopy, FT-IR)測量粉體吸收度的表現,最後也針對有無添加耦合劑的二氧化矽與覆蓋率之間的關係進行探討。


With the continuous innovation and development of science and technology, people enjoy a convenient life, while the burden behind it is environmental damage. Since the Industrial Revolution in the 18th century, it has emitted too much greenhouse gas. The production of greenhouse gases will affect the surface temperature that cannot be smoothly spread to outer space, which will cause the global temperature increase day by day. In order to improve this problem, the characteristics of high absorption and emission in the infrared atmospheric window area (8-13μm) of silica can be used to solve the problem of global warming.
In this study, the sol-gel method was used to synthesize silica. This method can reduce the standard deviation of the particle size and avoid the different radiative cooling effects on different particle sizes. This can be achieved by changing the pH value, solvent ratio and concentration. Control the changes on particle size and morphology, and compare the effects of different variables on the ability to absorb infrared radiation. Finally, 0.1M silica particles treated by the solvents of 100 ml ethanol and 100 ml Di-water at pH=11 has the highest absorption ability. Therefore, the powder was mixed with Teflon film, and the relationship between the silica powder and the surface coverage after the addition of coupling agent was compared. Finally, the solar radiative cooling ability was measured. The result showed that it can be effectively reduced by 3.6°C at the highest temperature.
The experimental results of each stage were used to characterize powder phase composition by X-ray diffractometer (XRD), and focused ion beam microscope (FIB) was used to explore the particle surface and calculate the particle size, and Fourier transform infrared spectrometer (FT-IR) measure the performance of powder absorption, and finally discuss the relationship between adding coupling agent silica and the coverage.

摘要 i Abstract iii 目錄 vii 圖目錄 xi 表目錄 xv 第一章 緒論 1 1.1研究背景 1 1.2研究動機 3 第二章 文獻回顧 4 2.1輻射冷卻 4 2.1.1寬帶與選擇性輻射器 7 2.1.2輻射冷卻裝置架構 9 2.2二氧化矽合成方法 16 2.2.1溶膠-凝膠法 17 2.2.2溶膠-凝膠法反應機制 17 2.2.3成核成長機制 20 2.2.4溶膠-凝膠製程參數對粒徑大小的影響 21 第三章 實驗方法與目的 27 3.1實驗設計 27 3.2實驗藥品 28 3.3實驗儀器設備 29 3.4樣品製備流程 30 3.5樣品性質之分析方法 31 3.5.1 X光晶體繞射分析儀(X-ray diffractometer) 31 3.5.2聚焦型離子束顯微鏡(Focused ion beam, FIB) 34 3.5.3傅立葉轉換紅外線光譜儀 (Fourier transform infrared spectroscopy, FT-IR) 37 3.5.4 日間冷卻測試 (Diurnal cooling test,Thermocouple) 38 第四章 實驗結果 39 4.1不同pH值對0.1M二氧化矽粉體粒徑與吸收度的影響 39 4.1.1不同pH值對0.1M二氧化矽粉體的晶相鑑定(XRD) 39 4.1.2不同pH值對0.1M二氧化矽粉體的表面形貌與粒徑大小分析(FIB) 40 4.1.3不同pH值對0.1M二氧化矽粉體的吸收度分析(FTIR) 42 4.2不同水與酒精比例在pH=11的環境下合成0.1M二氧化矽粉體型貌與吸收度的影響 44 4.2.1不同水與酒精比例在pH=11的環境下合成0.1M二氧化矽粉體的晶相鑑定(XRD) 44 4.2.2不同水與酒精比例在pH=11環境下合成0.1M二氧化矽粉體的表面形貌與粒徑大小分析(FIB) 45 4.2.3不同水與酒精比例在pH=11環境下合成0.1M二氧化矽粉體的吸收度分析(FTIR) 47 4.3於pH=11、酒精與水比例各半的條件下合成不同濃度的二氧化矽粒徑與吸收度的影響 49 4.3.1於pH=11、酒精與水比例各半的條件下合成不同濃度的二氧化矽粉體晶相鑑定(XRD) 49 4.3.2於pH=11、酒精與水比例各半的條件下合成不同濃度的二氧化矽粉體表面形貌與粒徑大小分析(FIB) 50 4.3.3於pH=11、酒精與水比例各半的條件下合成不同濃度的二氧化矽粉體的吸收度分析(FTIR) 52 4.4 二氧化矽粉體與鐵氟龍混合 53 4.4.1二氧化矽粉體與鐵氟龍混合材料晶相鑑定(XRD) 53 4.4.2二氧化矽粉體與鐵氟龍混合材料表面形貌與覆蓋率(SEM) 54 4.4.3二氧化矽粉體與鐵氟龍混合材料的冷卻表現 54 第五章 結果與討論 57 5.1水含量與粒徑大小之間的探討 57 5.2水含量與型貌變化的探討 58 5.3添加耦合劑對覆蓋率之間的探討 59 第六章 結論 60 第七章 未來工作 61 參考文獻 62

[1] 陳鐘誠, 世界史 — 工業革命, (2018)
[2] J. Houghton, Global warming, Reports on Progress in Physics, 68 (2005) 1343.
[3] 科技谷, 大自然在救人類:植物正在加速吸收二氧化碳減緩全球暖化(2016).
[4] 黃天如, 台灣去年均溫飆24.56度創歷史新高, (2020).
[5] 維基百科, 全球暖化效應.
[6] 禪天下, 夏月與非夏月比例, (2018).
[7] 維基百科, Electricity sector in Taiwan.
[8] E. Clark, P. Berdahl, Radiative cooling: resource and applications, Sponsored and Developed by US Department of Energy/. (1981) 219.
[9] W. Li, S. Fan, Radiative cooling: harvesting the coldness of the universe, Optics and Photonics News, 30 (2019) 32-39.
[10] D. Zhao, A. Aili, Y. Zhai, S. Xu, G. Tan, X. Yin, R. Yang, Radiative sky cooling: Fundamental principles, materials, and applications, Applied Physics Reviews, 6 (2019) 021306.
[11] The Earth's Climate.
[12] M.M. Hossain, M. Gu, Radiative cooling: principles, progress, and potentials, Advanced Science, 3 (2016) 1500360.
[13] X. Sun, Y. Sun, Z. Zhou, M.A. Alam, P. Bermel, Radiative sky cooling: fundamental physics, materials, structures, and applications, Nanophotonics, 6 (2017) 997-1015.
[14] A. Berk, G. Anderson, P. Acharya, L. Bernstein, L. Muratov, J. Lee, M. Fox, S. Adler-Golden, J. Chetwynd, M. Hoke, Modtran5: 2006 update, 62331F-62331F, (2006).
[15] J. Feng, K. Gao, M. Santamouris, K.W. Shah, G. Ranzi, Dynamic impact of climate on the performance of daytime radiative cooling materials, Solar Energy Materials and Solar Cells, 208 (2020) 110426.
[16] B. Orel, M.K. Gunde, A. Krainer, Radiative cooling efficiency of white pigmented paints, Solar energy, 50 (1993) 477-482.
[17] C. Granqvist, Radiative heating and cooling with spectrally selective surfaces, Applied Optics, 20 (1981) 2606-2615.
[18] C. Granqvist, A. Hjortsberg, Surfaces for radiative cooling: Silicon monoxide films on aluminum, Applied Physics Letters, 36 (1980) 139-141.
[19] A.P. Raman, M. Abou Anoma, L. Zhu, E. Rephaeli, S. Fan, Passive radiative cooling below ambient air temperature under direct sunlight, Nature, 515 (2014) 540-544.
[20] Z. Huang, X. Ruan, Nanoparticle embedded double-layer coating for daytime radiative cooling, International Journal of Heat and Mass Transfer, 104 (2017) 890-896.
[21] Y. Zhai, Y. Ma, S.N. David, D. Zhao, R. Lou, G. Tan, R. Yang, X. Yin, Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling, Science, 355 (2017) 1062-1066.
[22] O.F. Curtis, Leaf temperatures and the cooling of leaves by radiation, Plant Physiology, 11 (1936) 343.
[23] T. Matshi, H. Eguchi, K. Mori, Control of dew and frost formations on leaf by radiative cooling, Environment control in biology, 19 (1981) 51-57.
[24] N.N. Shi, C.-C. Tsai, F. Camino, G.D. Bernard, N. Yu, R. Wehner, Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants, Science, 349 (2015) 298-301.
[25] A. Addeo, E. Monza, M. Peraldo, B. Bartoli, B. Coluzzi, V. Silvestrini, G. Troise, Selective covers for natural cooling devices, Il Nuovo Cimento C, 1 (1978) 419-429.
[26] F. Trombe, Perspectives sur l'utilisation des rayonnements solaires et terrestres dans certaines régions du monde, (1975).
[27] P. Grenier, Réfrigération radiative. Effet de serre inverse, Revue de Physique Appliquee, 14 (1979) 87-90.
[28] C. Granqvist, A. Hjortsberg, Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films, Journal of Applied Physics, 52 (1981) 4205-4220.
[29] B. Czapla, A. Srinivasan, Q. Yin, A. Narayanaswamy, Potential for passive radiative cooling by PDMS selective emitters, ASME 2017 Heat Transfer Summer Conference, American Society of Mechanical Engineers Digital Collection, 2017.
[30] M. Hu, G. Pei, Q. Wang, J. Li, Y. Wang, J. Ji, Field test and preliminary analysis of a combined diurnal solar heating and nocturnal radiative cooling system, Applied energy, 179 (2016) 899-908.
[31] J.-l. Kou, Z. Jurado, Z. Chen, S. Fan, A.J. Minnich, Daytime radiative cooling using near-black infrared emitters, Acs Photonics, 4 (2017) 626-630.
[32] M.A. Kecebas, M.P. Menguc, A. Kosar, K. Sendur, Passive radiative cooling design with broadband optical thin-film filters, Journal of Quantitative Spectroscopy and Radiative Transfer, 198 (2017) 179-186.
[33] E.D. Palik, Handbook of optical constants of solids, Academic press1998.
[34] F. Geotti-Bianchini, M. Preo, M. Guglielmi, C.G. Pantano, Infrared reflectance spectra of semi-transparent SiO2 rich films on silicate glasses: influence of the substrate and film thickness, Journal of non-crystalline solids, 321 (2003) 110-119.
[35] H. Bao, C. Yan, B. Wang, X. Fang, C. Zhao, X. Ruan, Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling, Solar Energy Materials and Solar Cells, 168 (2017) 78-84.
[36] A.R. Gentle, G.B. Smith, Radiative heat pumping from the earth using surface phonon resonant nanoparticles, Nano letters, 10 (2010) 373-379.
[37] L.P. Singh, S.K. Bhattacharyya, R. Kumar, G. Mishra, U. Sharma, G. Singh, S. Ahalawat, Sol-Gel processing of silica nanoparticles and their applications, Advances in colloid and interface science, 214 (2014) 17-37.
[38] S. Stopic, F. Wenz, T. Husovic, B. Friedrich, Synthesis of Silica Particles Using Ultrasonic Spray Pyrolysis Method. Metals 2021, 11, 463, s Note: MDPI stays neutral with regard to jurisdictional claims in published …, 2021.
[39] P.B. Sarawade, J.-K. Kim, A. Hilonga, H.T. Kim, Preparation of hydrophobic mesoporous silica powder with a high specific surface area by surface modification of a wet-gel slurry and spray-drying, Powder Technology, 197 (2010) 288-294.
[40] E. Elaloui, G. Pajonk, Synthèse sol-gel: application à la silice, J Soc Chim Tunisie, 4 (2000) 607.
[41] R. Roy, Ceramics by the solution-sol-gel route, Science, 238 (1987) 1664-1669.
[42] S. Sakka, K. Kamiya, The sol-gel transition in the hydrolysis of metal alkoxides in relation to the formation of glass fibers and films, Journal of Non-Crystalline Solids, 48 (1982) 31-46.
[43] E. Pope, J. Mackenzie, Sol-gel processing of silica: II. The role of the catalyst, Journal of non-crystalline solids, 87 (1986) 185-198.
[44] J.D. Mackenzie, Ultrastructure Processing of Advanced Materials, Calfornia Univ Los Angels Dept Of Materials Science Aad Engineering, 1994.
[45] C.B. Whitehead, S. Özkar, R.G. Finke, LaMer's 1950 model of particle formation: a review and critical analysis of its classical nucleation and fluctuation theory basis, of competing models and mechanisms for phase-changes and particle formation, and then of its application to silver halide, semiconductor, metal, and metal-oxide nanoparticles, Materials Advances, (2021).
[46] X. Luo, J. Dong, L. Zhang, J. Du, H. Wang, W. Gao, Preparation of silica micro spheres via a semibatch sol–gel method, Journal of Sol-Gel Science and Technology, 81 (2017) 669-677.
[47] W. Bol, The use of balanced filters in X-ray diffraction, Journal of Scientific Instruments, 44 (1967) 736.
[48] H. Meyers, Introductory solid state physics, CRC press1997.
[49] A. Rigort, J.M. Plitzko, Cryo-focused-ion-beam applications in structural biology, Archives of biochemistry and biophysics, 581 (2015) 122-130.
[50] A.M. Glauert, Practical methods in electron microscopy, North‐Holland Publishing Company1975.
[51] P. Hovington, D. Drouin, R. Gauvin, CASINO: A new Monte Carlo code in C language for electron beam interaction—Part I: Description of the program, Scanning, 19 (1997) 1-14.
[52] X. Zhao, Y. Wang, J. Luo, P. Wang, P. Xiao, B. Jiang, The Influence of Water Content on the Growth of the Hybrid-Silica Particles by Sol-Gel Method, Silicon, (2020) 1-9.
[53] G. Chen, S. Zhou, G. Gu, L. Wu, Modification of colloidal silica on the mechanical properties of acrylic based polyurethane/silica composites, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 296 (2007) 29-36.

QR CODE