簡易檢索 / 詳目顯示

研究生: 劉致杰
Jhih-Jie Liu
論文名稱: 創新之潤滑油品質量測系統: 機構設計、系統整合與誤差分析
Novel design of measurement device for lubricant performance: mechanical design, system integration and error analysis
指導教授: 郭俊良
Chun-Liang Kuo
口試委員: 林原慶
Yuan-Ching Lin
劉孟昆
Meng-Kun Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 101
中文關鍵詞: 潤滑油品質量測系統稼動轉速溫度控制黏度指數導電度放電能量傳遞扭力熱傳導係數潤滑油色彩值隨機化完全區集設計殘差分析
外文關鍵詞: Lubricant quality measurement system, Controlled temperature, Discharging energy, Coefficient of the thermal conductivity, Colour index, Randomized complete block design (RCBD)
相關次數: 點閱:531下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在相對運動組件之接觸面,潤滑油已被廣泛使用來延長組件之壽命。雖然如此,潤滑油常受到工作溫度、機械應力、剪力而降解並產生氧化及基礎油分解產物,導致組件損壞而使機器故障,大大增加維修成本。因此,潤滑油之檢測是預防失效之最低成本方法。本研究為能兼併有效且即時的檢測潤滑油性能,研發一創新之潤滑油品質量測系統,可將潤滑油於靜態與動態之環境下,進行測試。當在靜態之荷重環境下,對潤滑油進行升溫加熱,觀測黏度指數與導電度之關聯。當潤滑油於稼動轉速(700–1300 rpm)與控制溫度(40–90°C)之動態操作下,可量測潤滑油之數據變異:極間之放電能量、傳遞扭力、熱傳導係數及潤滑油色彩值。當應用隨機化完全區集設計,可分析潤滑油於量測品質之變異。結果顯示,稼動轉速與控制溫度為影響傳遞扭力與熱傳導係數之顯著因子。說明量測系統之稼動轉速與控制溫度可作為量測及評估傳遞扭力與熱傳導係數之變異。此外,隨溫度提高,潤滑油逐漸由亮變黑及從黃變到深藍,控制溫度為影響潤滑油色彩L值(亮度)與B值(黃–藍)之顯著因子。因此,本系統藉由控制溫度對油膜顏色產生效應,作為量測與判斷潤滑油之變異。當以殘差分析計算隨機之殘差,可得量測指標之殘差分佈於線性擬合之精度(R2),分別為傳遞之扭力為87%、熱傳導係數為78%、色彩L值為72%及色彩B值為96%,亦即潤滑油之品質變異可藉由本系統之量測指標作為評估。


Lubricating oil has been widely used on the contact surface of relative moving components to reduce energy consumption and extend the life of components. Nevertheless, lubricating performance is often subject to changes by working temperature, shear stress, aging, and pollutants. As a result, degradations of lubricating performance on the oxidation, nitrification, sulfation, and decomposition products, leading to mechanical damages and failures, which greatly increases cost of repairs and maintenance. Therefore, detection of the lubricating performance in the upfront is necessitated for energy savings and given manufacturing. In order to incorporate effective and in-time detection of lubricant performance, this study has developed an novel design of measurement device for lubricant performance that can test lubricants in static and dynamic environments. When measurements are carried out under a static load, the alternations of the lubricated performance are observed with the correlation between viscosity index and electrical conductivity. When measurements are under the dynamic conditions with parameters of the loaded rotational speed (700–1300 rpm) and the controlled temperature (40–90°C), the recorded discharge energy between the electrodes, the load-bearing torque, the thermal conductivity and the colour value of the oil film are analysed and discussed. Based on the randomized complete block design, the variations and errors on indicators are correlated with measuring condition. In ANOVA, the measurement results show that the loaded rotational speed and the controlled temperature are significant factors for measuring the load-bearing torque and thermal conductivity. Both can be used to observe the effect on the oil, which can be used to measure and evaluate the load-bearing torque and heat transfer. On the other hand, the colour index value decreases with the increase of temperature, prompting the oil film to gradually change from bright to black and from orange to dark blue. The controlled temperature is a significant factor affecting the lubricating oil colour L index (brightness) and B index (yellow-blue). Therefore, evaluations of colour value of L and B can be used to judge the aging of lubricant performance by controlling the temperature. When the random error of the measurement value is calculated by residual analysis, the error distribution in the linear fitting accuracy (R2) of the measurement index are obtained. The precision levels of the bearing torque, thermal conductivity, colour brightness (L) and colour B index value are 87%, 78%, 72% and 96%, respectively. The established measuring system are tested and reliable for the evaluations of the lubrication performance in multiple objectives.

摘要 I Abstract II 致謝 IV 符號定義 V 目錄 VI 圖目錄 IX 表目錄 XII 第一章 研究介紹 1 第二章 文獻回顧 3 2.1 潤滑油種類與應用 3 2.2 油膜破壞演化之機制 4 2.3 剪應變率與熱對潤滑油之影響 5 2.4 潤滑油檢測方法 9 2.5 系統檢測之不確定性分析 13 2.7 統計分析與最佳化 13 第三章 油膜系統之功能、機構設計與製造 15 3.1 極間放電之物理特性 15 3.2 油膜黏度對邊界層之效應 16 3.3 潤滑油性能檢測系統之機構設計 18 3.4 控制迴路 20 3.5 同步之量測功能 21 3.4.1 電壓與電流訊號之取樣 21 3.4.2 扭力之量測 22 3.4.3 油膜溫度之量測 22 3.4.4 潤滑油色彩之影像辨識 23 3.6 殘差分析 24 第四章 實驗工作與分析方法 26 4.1 設計與研究流程 26 4.2 實驗材料 27 4.3 量測設置 29 4.4 數據之檢測與取樣 32 4.4.1 電氣訊號之量測 32 4.4.2 扭力之量測 34 4.4.3 油膜溫度之量測 35 4.4.4 潤滑油顏色之檢測 36 4.5 實驗設計 37 4.5.1 Phase A: 油膜溫度於導電度之效應 37 4.5.2 Phase B: 溫度與轉速於油膜品質之變異數分析 37 4.6 主因子圖與變異數分析 39 第五章 實驗結果與討論 40 5.1 油膜溫度於導電度之效應 40 5.1.1 油膜溫度於黏度與導電度之關聯 40 5.1.2 極間放電之電壓與電流 42 5.2 溫度與轉速於油膜品質之效應 42 5.2.1 極間放電之能量分析 42 5.2.2 轉速與溫度對於傳遞扭力之效應 46 5.2.3 傳遞扭力之信賴區間 49 5.2.4 操作參數於油膜熱傳導係數之關聯與變異 51 5.2.5 熱傳導係數之信賴區間 54 5.2.6 潤滑油顏色辨識之變異 56 5.2.7 潤滑油色彩之信賴區間 66 5.2.8 傳遞扭力、熱傳導系數與色彩值之殘差分析 69 第六章 結論與未來展望 74 6.1 文獻回顧總結 74 6.2 研究結果總結 75 6.3 未來展望 78 參考文獻 80 附錄一 研究著作與學術榮譽 86

[1] E. Daschner, D.M. Pirro, M. Webster, Lubrication Fundamentals, Third Edition, Revised and Expanded-CRC Press, 2016.
[2] A.A. Wessol, D.M. Pirro, Lubrication Fundamentals, Second Edition -CRC Press, 2001.
[3] T. Mang, S. Noll, T. Bartels, Lubricants, Fundamentals of Lubricants and Lubrication, Ullmann's Encyclopedia of Industrial Chemistry, 2011.
[4] J.M. Wakiru, L. Pintelon, P.N. Muchiri, P.K. Chemweno, A review on lubricant condition monitoring information analysis for maintenance decision support, Mechanical Systems and Signal Processing, 118 (2019) 108-132.
[5] P.D. Brito, Effect of Lubricant Degradation on the Tribological Performance, Universidad Nacional de Colombia, 2014.
[6] F.J. Owuna, Stability of vegetable based oils used in the formulation of ecofriendly lubricants – a review, Egyptian Journal of Petroleum, 29 (2020) 251-256.
[7] C.C. Fraenza, E. Förster, G. Guthausen, H. Nirschl, E. Anoardo, Use of 1H-NMR spectroscopy, diffusometry and relaxometry for the characterization of thermally-induced degradation of motor oils, Tribology International, 153 (2021) 106620.
[8] S. Zzeyani, M. Mikou, J. Naja, A. Elachhab, Spectroscopic analysis of synthetic lubricating oil, Tribology International, 114 (2017) 27-32.
[9] F.C.P. Ribeiro, A.S. Oliveira, A. Araújo, W. Marinho, M.P. Schneider, L. Pinto, A.A. Gomes, Detection oxidative degradation in lubricating oil under storage conditions using digital images and chemometrics, Microchemical Journal, 147 (2019) 622-627.
[10] J. Sentanuhady, W. Saputro, M.A. Muflikhun, Metals and chemical compounds contaminants in diesel engine lubricant with B20 and B100 biofuels for long term operation, Sustainable Energy Technologies and Assessments, 45 (2021) 101161.
[11] R.M. Mortier, S.T. Orszulik, Chemistry and technology of lubricants, Glasgow London : Blackie, Glasgow London, 1992.
[12] J.A. Heredia-Cancino, M. Ramezani, M.E. Álvarez-Ramos, Effect of degradation on tribological performance of engine lubricants at elevated temperatures, Tribology International, 124 (2018) 230-237.
[13] K. Motahari, M. Abdollahi Moghaddam, M. Moradian, Experimental investigation and development of new correlation for influences of temperature and concentration on dynamic viscosity of MWCNT-SiO 2 (20-80)/20W50 hybrid nano-lubricant, Chinese Journal of Chemical Engineering, 26 (2018) 152-158.
[14] M. Afrand, K. Nazari Najafabadi, M. Akbari, Effects of temperature and solid volume fraction on viscosity of SiO2-MWCNTs/SAE40 hybrid nanofluid as a coolant and lubricant in heat engines, Applied Thermal Engineering, 102 (2016) 45-54.
[15] S. Narayanasarma, B.T. Kuzhiveli, Evaluation of lubricant properties of polyolester oil blended with sesame oil-An experimental investigation, Journal of Cleaner Production, 281 (2021) 125347.
[16] M.E. Soltani, K. Shams, S. Akbarzadeh, A. Ruggiero, A Comparative Investigation on the Tribological Performance and Physicochemical Properties of Biolubricants of Various Sources, a Petroleum-Based Lubricant, and Blends of the Petroleum-Based Lubricant and Crambe Oil, Tribology Transactions, 63 (2020) 1121-1134.
[17] A.A. Bhosale, K. Joshi, T. Karadkar, K. Mangidkar, P. Mundhe, Analysis of Lubricating Oil Deterioration in Four-Wheeler, Applied Mechanics and Materials, 446-447 (2013) 558-561.
[18] Y. Peng, T. Wu, S. Wang, Z. Peng, Oxidation wear monitoring based on the color extraction of on-line wear debris, Wear, 332-333 (2015) 1151-1157.
[19] A.S. Behnam Rahimi, Alireza Nezamzade Ejhieh , Hamid Shakoori Langeroodi, Mas, Dr., Application Of Icp-Oes In The Comparative Analysis Of A Used And Fresh Gasoline Motor Oil, Global Journal of Science Frontier Research, 12 (2012).
[20] T.J. Harvey, R.J.K. Wood, G. Denuault, H.E.G. Powrie, Effect of oil quality on electrostatic charge generation and transport, Journal of Electrostatics, 55 (2002) 1-23.
[21] S.I. El-Sisi, G.S.A. Shawki, Measurement of Oil-Film Thickness Between Disks by Electrical Conductivity, Journal of Basic Engineering, 82 (1960) 12-16.
[22] R.M. Charin, G.M.T. Chaves, K. Kashefi, R.P. Alves, F.W. Tavares, M. Nele, Crude Oil Electrical Conductivity Measurements at High Temperatures: Introduction of Apparatus and Methodology, Energy & Fuels, 31 (2017) 3669-3674.
[23] M. Torbacke, A.K. Rudolphi, E. Kassfeldt, Lubricant Properties, Lubricants, 2014, pp. 19-44.
[24] P. Radhika, C.B. Sobhan, S. Chakravorti, Improved tribological behavior of lubricating oil dispersed with hybrid nanoparticles of functionalized carbon spheres and graphene nano platelets, Applied Surface Science, 540 (2021) 148402.
[25] Y. Du, T. Wu, J. Cheng, R. Gong, Lubricating oil deterioration on a four-ball test rig via on-line monitoring, 2015.
[26] H. Wu, L. Wang, G. Dong, S. Yang, J. Zhang, B. Zhou, Z. Tang, Lubrication effectiveness investigation on the friendly capped MoS2 nanoparticles, Lubrication Science, 29 (2017) 115-129.
[27] L.I. Farfan-Cabrera, E.A. Gallardo-Hernández, M. Gómez-Guarneros, J. Pérez-González, J.G. Godínez-Salcedo, Alteration of lubricity of Jatropha oil used as bio-lubricant for engines due to thermal ageing, Renewable Energy, 149 (2020) 1197-1204.
[28] H. Wu, L. Wang, B. Johnson, S. Yang, J. Zhang, G. Dong, Investigation on the lubrication advantages of MoS2 nanosheets compared with ZDDP using block-on-ring tests, Wear, 394-395 (2018) 40-49.
[29] H. Wu, S. Yin, Y. Du, L. Wang, H. Wang, An investigation on the lubrication effectiveness of MoS2 and BN layered materials as oil additives using block-on-ring tests, Tribology International, 151 (2020) 106516.
[30] P.L. Menezes, Kishore, S.V. Kailas, M.S. Bobji, Influence of tilt angle of plate on friction and transfer layer—A study of aluminium pin sliding against steel plate, Tribology International, 43 (2010) 897-905.
[31] R. Balakumar, G. Sriram, S. Arumugam, Effect of Lubricant contaminated with Waste Ayurvedic Oil Biodiesel on Tribological Behavior of Cylinder Liner-Piston Ring Tribo pair Material, Materials Today: Proceedings, 5 (2018) 13220-13226.
[32] A. Zanobini, B. Sereni, M. Catelani, L. Ciani, Repeatability and Reproducibility techniques for the analysis of measurement systems, Measurement, 86 (2016) 125-132.
[33] S. Arumugam, P. Chengareddy, G. Sriram, Synthesis, characterisation and tribological investigation of vegetable oil-based pentaerythryl ester as biodegradable compressor oil, Industrial Crops and Products, 123 (2018) 617-628.
[34] S.S. Sanukrishna, M. Shafi, M. Murukan, M. Jose Prakash, Effect of SiO2 nanoparticles on the heat transfer characteristics of refrigerant and tribological behaviour of lubricant, Powder Technology, 356 (2019) 39-49.
[35] W. Żurowski, J. Zepchło, D. Kanaška, M. Rucki, Concept and assessment of the novel design of tribological tester, Measurement, 170 (2021) 108724.
[36] D.C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons, 2005.
[37] C. Chatfield, Statistics for Technology: A Course in Applied Statistics, Chapman and Hall/CRC, 1983.
[38] M. Kapsiz, M. Durat, F. Ficici, Friction and wear studies between cylinder liner and piston ring pair using Taguchi design method, Advances in Engineering Software, 42 (2011) 595-603.
[39] P. Thapliyal, G.D. Thakre, Correlation Study of Physicochemical, Rheological, and Tribological Parameters of Engine Oils, Advances in Tribology, 2017 (2017) 1-12.
[40] A. Suhanea, R.M. Sarviyab, A.R. Siddiquib, H.K. Khairac, Optimization of Wear Performance of Castor Oil based Lubricant using Taguchi Technique, Materials, 4 (2017) 2095-2104.
[41] S. Hisham, K. Kadirgama, D. Ramasamy, M.M. Noor, A.K. Amirruddin, G. Najafi, M.M. Rahman, Waste cooking oil blended with the engine oil for reduction of friction and wear on piston skirt, Fuel, 205 (2017) 247-261.
[42] B.E. Rapp, Continuity and Navier-Stokes Equations in Different Coordinate Systems, in: B.E. Rapp (Ed.) Microfluidics: Modelling, Mechanics and Mathematics, Elsevier, Oxford, 2017, pp. 303-308.
[43] O. Reynolds, "On the Theory of Lubrication and Its Application to Mr. Beauchamp Tower's Experiments, Including an Experimental Determination of the Viscosity of Olive Oil", Philosophical Transactions of the Royal Society of London, 177 157-234 (1886).
[44] F.W. Ocvirk, Short-bearing Aprroximation for Full Journal Bearings, 1952.
[45] A.A. Raimondi, J. Boyd, A Solution for the Finite Journal Bearing and its Application to Analysis and Design: I, A S L E Transactions, 1 (1958) 159-174.
[46] R.W.G. Hunt, M.R. Pointer, Measruing Colour, Fourth edition-John Wiley & Sons, 2011.

無法下載圖示 全文公開日期 2026/06/25 (校內網路)
全文公開日期 2026/06/25 (校外網路)
全文公開日期 2026/06/25 (國家圖書館:臺灣博碩士論文系統)
QR CODE