簡易檢索 / 詳目顯示

研究生: 張智勝
Chih-Sheng Chang
論文名稱: 簡化土壤結構互制系統之隨機振動分析
The Random Vibration Analysis of Simplified Soil-Structure Interaction Systems
指導教授: 陳希舜
Shi-Shuenn Chen
口試委員: 黃慶東
Ching-Dong Huang
陳瑞華
Rui-Hua Chen
施俊揚
Jun-Yang Shi
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 111
中文關鍵詞: 土壤結構互制結構與土壤互制頻譜分析隨機振動
外文關鍵詞: Soil-Structure Interaction, Random Vibration, Spectrum Analysis
相關次數: 點閱:160下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究簡化土壤與五層抗彎矩構架互制系統在水平地震作用下的動態行為,以白訊、高斯函數及窗函數之能譜密度函數地震輸入,在頻率域進行隨機振動分析。
    研究結果顯示,當輸入地表振動的能量譜密度函數PSD為白訊時,比較簡化模式與實際模式的反應,五樓頂加速度反應PSD及標準差最大誤差均不超過10%。在輸入地表振動PSD為高斯函數時,加速度反應PSD與標準差最大誤差均不超過8%。因此,簡化模式應可適當模擬土壤真實狀況,應用於土壤結構互制系統之隨機振動分析。當輸入地表振動能量譜密度函數為窗函數時,若輸入運動的顯著頻率接近系統共振頻率,簡化模式可有效適用,但顯著頻率遠離系統共振頻率時,則簡化模式需做適當調整使用。
    此外,比較簡化模式與實際模式,五樓頂加速度標準差的誤差隨樓層質量比線性減少;五樓頂加速度標準差將隨著樓層勁度比線性增加。未來簡化模式的改良可據此發現做適當調整。


    In this thesis, the dynamic behavior of a simplified soil and a five-story MRF interaction system under horizontal earthquake is studied. The Power Spectral Density(PSD) functions of the seismic input under the form of white noise, Gaussian function and window function are used to perform random vibration analysis in the frequency domain.
    The results show that when the PSD of the input surface vibration is a white noise, the response between the simplified system and the real system is well compared, and the maximum errors of the PSD and the standard deviation of the acceleration response at the top of the building are all less than 10%. When the input surface vibration PSD is a Gaussian function, the maximum errors of the acceleration response PSD and the standard deviation are all less than 8%. Therefore, the simplified system should be able to properly simulate the true state of the soil and be applied to the random vibration analysis of the soil structure interaction system. When the PSD of the input surface vibration is a window function, if the main frequency of the input motion is close to the system resonance frequency, the simplified system can be effectively applied, but when the main frequency is far away from the system resonance frequency, the simplified system needs to be properly adjusted.
    In addition, comparing the simplified system with the real system, the error of the standard deviation of the acceleration response at the top of the building decreases linearly with the floor mass ratio and increases linearly with the floor stiffness ratio. Therefore, improvements to future simplified systems can be adjusted accordingly.

    論文摘要 I ABSTRACT II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究內容 2 第二章 文獻回顧 3 2.1 動態土壤結構互制系統 3 2.1.1 土壤簡化分析模式 4 2.1.2 土壤結構簡化分析模型 12 2.1.3 ANSYS分析軟體 17 2.1.4 SASSI分析軟體 18 2.2 隨機振動分析模式 20 2.3 小結 21 第三章 研究方法 22 3.1 頻率域反應分析 22 3.2 隨機振動分析 23 3.3 小結 27 第四章 土壤與結構互制系統之頻率域反應分析 28 4.1 分析參數 28 4.2 分析案例 29 4.2.1 樓層質量比對動態反應的影響 29 4.2.2 樓層勁度比對動態反應的影響 30 4.2.3 基礎埋入比對動態反應的影響 31 4.3 小結 33 第五章 土壤結構互制系統受白訊輸入分析 34 5.1 結構與土壤參數 34 5.2 白訊地表振動輸入 35 5.3 隨機振動反應 35 5.3.1 能量譜密度函數 36 5.3.2 標準差比 38 5.4 小結 40 第六章 土壤結構互制系統受高斯函數輸入分析 41 6.1 結構與土壤參數 41 6.2 高斯函數地表振動輸入 41 6.3 隨機振動反應 42 6.3.1 能量頻譜密度函數 42 6.3.2 標準差比 44 6.4 小結 46 第七章 土壤結構互制系統受窗函數輸入分析 47 7.1 結構與土壤參數 47 7.2 窗函數地表振動輸入 47 7.2.1 共振頻率輸入之隨機振動反應(β=1) 49 7.2.2 三倍共振頻率輸入之隨機振動反應(β=3) 51 7.2.3 五倍共振頻率輸入之隨機振動反應(β=5) 53 7.3 小結 56 第八章 結論及建議 57 8.1 結論 57 8.2 建議 59 參考文獻 60

    [1] Chen, S. S. and Shi, J. Y . (2013), “A simplified model for coupled horizontal and rocking vibrations of embedded foundations.” Soil Dynamics and Earthquake Engineering. 48, 209-219.

    [2] Liu Jingbo, and Lu Yandong, (1998), "A direct method for analysis of dynamic soil-structure interaction based on interface idea." Developments in Geotechnical Engineering, 83, 261-276

    [3]羅博智,「次結構法分析土壤-結構互制行為」,碩士論文,國立交通大學土木工程學系,2004年。

    [4] Gutierrez, Jorge A. and Chopra, Anil K. (1978), “substructure method for earthquake analysis of structures including structure‐soil interaction” The Journal of the International Association for Earthquake Engineering, Vol 6, 51-79.

    [5] Lysmer, J. and Richart, F. E. (1966), “Dynamic response of footings to vertical loading, Journal of Soil Mechanics and Foundation Division, 92 (SM1), 65-91.

    [6] Meek, J. W. and Veletsos, A. S. (1974), “Simple models for foundations in lateral and rocking motion.” Proceedings of the 5th World Conference on Earthquake Engineering, Rome, 2 (1974) 2610-2613.

    [7] Veletsos, A. S. and Nair, V. V. D. (1974).”Torsional vibration of viscoelastic foundation.” Journal of Geotechnial Engineering, ASCE, 100(GT3), 225-246.

    [8] Veletsos, A. S. and Nair, V. V. D. (1974).”Response of torsionally excited foundation.” Journal of Geotechnial Engineering, ASCE, 100(GT4), 476-482.

    [9] Meek, J. W. and Veletsos, A. S. (1974). “Simple models of foundation in lateral and rocking motion.” Proceedings of the 5th World Conference on Earthquake Engineering, Rome, 2, 2610-2613.

    [10] Wolf, J. P. and Somaini, D. R. (1986) , “Approximate dynamic model of embedded foundation in time domain.” Earthquake Engineering Structural Dynamic, 14(5), 683-703.

    [11] De Barros, F. C. P. and Luco, J. E.(1990), “Discrete models for vertical vibrations of surface and embedded foundations.” Earthquake Engineering Structural Dynamic, 19(2), 289-303.

    [12] Jean,W. Y. , Lin ,T. W. and Penzien, J.(1990), “System parameters of soil foundation for time domain dynamic analysis.” Earthquake Engineering Structural Dynamic,19(4) 541-553.

    [13] Wolf, J. P.(1997), “Spring-dashpot-mass models for foundation vibrations.” Earthquake Engineering Structural Dynamic, 26, 931-949.

    [14] Wu, W. H, and Chen, C. Y. (2001). “Simple lumped-parameter models of foundation using mass-spring-dashpot oscillators.” Jouranl of Chinese Institute of Engineers, 24(6), 681-697.

    [15] Wu, W. H, and Lee, W. H. (2004). “Nested lumped-parameter model for foundation vibrations.” Earthquake Engineering and Structral Dynamics, 33(9), 1051-1058

    [16]余家豐,「抗彎矩建築構架與土壤互制系統之動態簡化分析」,碩士論文,國立台灣科技大學,2018年。
    [17]Lysmer, J., Tabatabaie, M., Tajirian F., Vahdani, S., and Ostadan, F. , (1981). “SASSI-A System for Analysis of Soil-Structure Interaction.” Report No. UCB/GT/81-02, University of California, Berkeley.

    [18] Ghiocel, D. M. and Ghanem, R. G. (2002). “Stochastic Finite-Element Analysis of Seismic Soil–Structure Interaction.” Journal of Engineering Mechanics, 128(1), 66-77

    [19] Amini, F. and Tawfiq, K. S. and Aggour, M. S. (1988) “Cohesionless Soil Behavior Under Random Excitation Conditions.” Journal of Geotechnical Engineering, 114(8), 896-914

    [20]林長源,「多跨距Timoshenko樑與Mindlin板承受移動負載之隨機動態分析」,碩士論文,國立成功大學,1996年。

    [21]黃士修,「隨機振動引致桁架系統疲勞失敗機率之評估」,碩士論文,國立中興大學,1992年。

    [22]黃旭東,「以隨機過程理論求地震之反應譜」,碩士論文,國立台灣大學,1994年。

    [23]施俊揚,「動態土壤結構互制系統簡化分析模式」,博士論文,國立台灣科技大學,2006年。

    QR CODE