簡易檢索 / 詳目顯示

研究生: 蔡富傑
Fu-chieh Tsai
論文名稱: 以反應性離子束濺鍍法成長氧化鋅薄膜
A study of ZnO films grown by Reactive Ion Beam Sputter Deposition
指導教授: 趙良君
Liang-chiun Chao
口試委員: 黃鶯聲
none
蘇忠傑
none
唐志雄
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 75
中文關鍵詞: 氧化鋅離子束濺鍍
外文關鍵詞: ZnO, ion beam sputter
相關次數: 點閱:175下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文是以反應性離子束濺鍍法成長氧化鋅薄膜,嘗試在兩種不同反應濺鍍環境:一是“氧氣直接通入腔體”;另一是“氧及氬氣同時通入離子槍”作反應性濺鍍,並探討通入氧流量的多寡對薄膜性質、光學、結構的影響。在未經過熱處理之前,從XPS分析觀察到“氧及氬氣同時通入離子槍”反應性濺鍍,鋅與氧的比值(Zn/O)較接近1。薄膜在可見光範圍有80%以上的穿透率,而光學能隙藉穿透頻譜計算大約在3.3~3.45 eV且折射率在1.95左右。從X-ray繞射分析觀察到薄膜為非晶態,且橫截面結構雖然緻密但有柱狀結構存在,而表面粗糙度均方根值在4nm以下。在經過熱處理後,薄膜的主要繞射峰為(002),在氧氛圍中退火(002)繞射峰強度較氮氛圍強。在表面形貌方面,粗糙度均方根值約提高一倍以上,但
小於10nm以下。PL頻譜也顯示熱處理時通入氧氣可以降低氧缺陷的產生。


Zinc oxide films are prepared by ion beam sputtering deposition utilizing two different arrangements. Oxygen is introduced into the growth chamber by passing through the capillaritron ion source together with the argon gas, or by releasing into the growth chamber separately. The influence of oxygen flow rates on the chemical composition, surface morphology, and optical properties of ZnO films are investigated. Before annealing, the XPS study indicates that by passing oxygen through the ion source, Zn/O ratio approaches 1.0. The transmittance of the films is larger than 80% in the visible range and the band gap are found from the transmission spectra to be between 3.3~3.45 eV. The refractive index of the films is close to 1.95.The X-ray analysis indicates that the as-deposited films are amorphous and the cross section is compact but exhibit columnar structure. The RMS of surface roughness is below 4nm. After annealing, the main diffraction peak of the films is (002) and its intensity is stronger as annelaed in oxygen than in nitrogen. The RMS of surface roughness increases, but is smaller than 10nm. PL spectra show that oxygen defects can be reduced when samples are annealed in oxygen.

中文摘要 ----------------------------------------- Ⅰ 英文摘要 ----------------------------------------- Ⅱ 圖表索引 ------------------------------------------ V 第ㄧ章 緒論 1.1 前言 ----------------------------------------- 1 1.2 研究動機與目的 ------------------------------- 2 1.3 氧化鋅晶體結構 ------------------------------- 3 第二章 理論基礎 2.1 離子束濺鍍 ----------------------------------- 4 2.1.1 離子束濺鍍原理 ------------------------- 4 2.1.2 離子源 --------------------------------- 6 2.2 離子束相關應用 2.2.1 離子束輔助沉積 ------------------------- 7 2.1.2 聚焦離子束 ----------------------------- 8 第三章 實驗與分析儀器 3.1 實驗方法 ------------------------------------- 10 3.2 實驗步驟與流程 ------------------------------- 12 3.3 分析儀器介紹 3.3.1 X-ray繞射儀 ---------------------------- 13 3.3.2 原子力顯微鏡 --------------------------- 14 3.3.3 化學分析電子儀 ------------------------- 16 3.3.4 光激發螢光 ----------------------------- 17 第四章 薄膜分析 4.1 XPS特性分析 4.1.1 氧氣直接通入腔體且離子束能量為6 keV之反應性濺鍍 ------------- 19 4.1.2 氧氣直接通入腔體且離子束能量為12keV之反應性濺鍍 ------------- 23 4.1.3 氧氣及氬氣同時通入離子槍且離子束能量為6 keV之反應性濺鍍------ 27 4.1.4 氧氣及氬氣同時通入離子槍且離子束能量為12keV之反應性濺鍍 ----- 31 4.2 二次質譜(SIMS)分析 --------------------------- 34 4.3 穿透率 --------------------------------------- 36 4.4 折射率 --------------------------------------- 40 4.5 橫截面 --------------------------------------- 41 4.6 X-ray 繞射分析-氧氣直接通入腔體之反應性濺鍍 4.6.1 未經熱處理 ----------------------------- 44 4.6.2 在氮、氧氛圍中,溫度800℃、1000℃下熱處理 ------------------- 45 4.7 X-ray 繞射分析-氧氣及氬氣同時通入離子槍之反應性濺鍍 4.7.1 未經熱處理 ----------------------------- 49 4.7.2 在氮、氧氛圍中,溫度800℃、1000℃下熱處理 ------------------- 50 4.8 表面形貌 - 氧氣直接通入腔體之反應性----------- 54 4.9 表面形貌 - 氧氣及氬氣同時通入離子槍之反應性濺鍍59 4.10光激發螢光 ----------------------------------- 64 4.10.1 氧氣直接通入腔體且離子束能量為6 keV之反應性濺 -------------- 64 4.10.2 氧氣及氬氣同時通入離子槍且離子束能量為6 keV之反應性濺 ---------- 67 第五章 結論 -------------------------------------- 70 參考文獻 ----------------------------------------- 71

1. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, “Room-temperature ultraviolet nanowire nanolasers”, P. Science, Vol. 292, pp. 1987-1899(2001).

2. P. Yu, Z. K. Tang, G. K. L. Wong, M. Kawaski, A. Ohtomo, and H. Koinuma, “World Scientific”, Proceedings of the 23rd International Conference on the Physics of Semiconductors, Singapore(1996).

3. G. Neumann, “On the Defect Structure of Zinc-Doped Zinc Oxide”, phys. status solidi B, Vol. 105, Issue 2, pp. 605-612(1981).

4. C. T. Lee, Y. K. Su, and H. M. Wang, “Effect of r.f. sputtering parameters on ZnO films deposited onto GaAs substrates”, Thin Solid Films, Vol. 150, Issues 2-3, pp. 283-289(1987).

5. K. Hashimoto, S. Ogawa, A. Nonoguchi, T. Omori and M. Yamaguchi, “Preparation of piezoelectric ZnO films by target facing type of sputtering method”, IEEE Ultrason. Symp., pp. 207-212(1998).

6. V. Gupta and A. Mansinph, “Influence of postdeposition annealing on the structural and optical properties of sputtered zinc oxide film”, J. Appl. Phys., Vol. 80, pp. 1063-1073(1996).

7. Mauro Varasi, Carlo Misiano and Luigi Lasaponara, “Deposition of optical thin films by ion beam sputtering”, Thin Solid Films, Vol. 117, pp. 163-172(1984).

8. T. E. Varitimos and R. W. Tustison, “Ion beam sputtering of ZnS thin films”, Thin Solid Films, Vol. 151, pp. 27-33(1987).

9. A. F. Stewart, S. Lu, M. Tehrani, C. Volk, “Ion Beam Sputtering of Optical Coatings”, SPIE, Vol. 2114, pp. 662-677(1993).

10. Cheng-Chung Lee, David T. Wei, Jin-Cherng Hsu, Chan-Han Shen, “Influence of oxygen on some oxide films prepared by ion beam sputter deposition”, Thin Solid Films, Vol. 290-291, pp. 88-93(1996).

11. Donghwan Kim, Younggun Han, Jun-Sik Cho and Seok-Keun Koh , “Low temperature deposition of ITO thin films by ion beam sputtering”, Thin Solid Films, Vol. 377-378, pp. 81-86(2000).

12. Martin, A., Espinos, J.P., Justo, A., Holgado, J.P., Yubero, F., Gonzalez-Elipe, A.R., “Preparation of transparent and conductive Al-doped ZnO thin films by ECR plasma enhanced CVD”, Surf. Coat. Technol., Vol. 151-152, pp. 289-293(2002).

13. J.P. Zheng and H.S. Kwok., “Preparation of indium tin oxide films at room temperature by pulsed laser deposition”, Thin Solid Films, Vol. 232, pp. 99-104(1993).

14. Y. F. Lu, H. Q. Ni, Z. H. Mai, and Z. M. Ren, “The effects of thermal annealing on ZnO thin films grown by pulsed laser deposition”, J. Appl. Phys., Vol. 88, Issue 1, pp. 498-502(2000).

15. K. Ogata, T. Kawanishi, K. Maejima, K. Sakurai, Sz. Fujita and Sg. Fujita., “Improvements of ZnO qualities grown by metal-organic vapor phase epitaxy using a molecular beam epitaxy grown ZnO layer as a substrate”, Jpn. J. Appl. Phys., Vol. 40, Part 2, pp. L657-L659(2001).

16. M.N. Kamalasanan and Subhas Chandra, “Sol-gel synthesis of ZnO thin films”, Thin Solid Films, Vol. 288, Issues 1-2, pp. 112-115(1996).

17. F. Paraguay D., W. Estrada L., D. R. Acosta N., E. Andrade and M. Miki-Yoshida, “Growth, structure and optical characterization of high quality ZnO thin films obtained by spray pyrolysis”, Thin Solid Films, Vol. 350, Issues 1-2, pp. 192-202(1999).

18. D. Bagnall, Y. chen, Z. Zhu, T. Yao, S. Koyama, M. Shen and T. Golo., “High temperature excitonic stimulated emission from ZnO epitaxial layers”, Appl. Phys. Lett., Vol.73, pp. 1038-1040(1998).

19. John F. Mahoney, Julius Perel, and A. Theodore Forrester, “Capillaritron: A new, versatile ion source”, Appl. Phys. Lett., Vol.38, pp. 320-322(1981).

20. Bernard E. Kalensher and Julius Perel, “Low-pressure gas flow through a microsize channel”, J. Appl. Phys., Vol. 53, Issue 4, pp. 2904-2909(1982).

21. 陳秀連,“以化學法製備均一粒徑氧化鋅粉體與發光特性之研究", 國立台灣科技大學材料科技研究所(2002).

22. CHARLES KITTEL, Introduction to Solid State Physics, John Wiley & Sons. ,New York(1995).

23. E. De la Rosa, S. Sepúlveda-Guzman, B. Reeja-Jayan, A. Torres, P. Salas, N. Elizondo, and M. Jose Yacaman, “Controlling the Growth and Luminescence Properties of Well-Faceted ZnO Nanorods”, J. Phys. Chem. C, Vol. 111, pp. 8489-8495(2007).

24. Niranjan S. Ramgir, Dattatray J. Late, Ashok B. Bhise, Mahendra A. More, Imtiaz S. Mulla, Dilip S. Joag, and K. Vijayamohanan, “ZnO Multipods, Submicron Wires, and Spherical Structures and Their Unique Field Emission Behavior”, J. Phys. Chem. B, Vol. 110, pp. 18236-18242(2006).

25. M. Chen, X. Wang, Y.H. Yu, Z.L. Pei, X.D. Bai, C. Sun, R.F. Huang, L.S. Wen, “X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films”, Appl. Surf. Sci., Vol. 158, pp. 134-140(2000).

26. H. J. Kim, J. W. Bae, J. S. Kim, K. S. Kim, Y. C. Jang, G. Y. Yeom and N. -E. Lee, “Electrical, optical, and structural characteristics of ITO thin films by krypton and oxygen dual ion-beam assisted evaporation at room temperature”, Thin Solid Films, Vol. 377-378, pp. 115-121(2000).

27. Shinobu Fujihara, Yusuke Ogawa, and Asayo Kasai, “Tunable Visible Photo- luminescence from ZnO Thin Films through Mg-Doping and Annealing”, Chem. Mater., Vol. 16, pp. 2965-2968(2004).

28. E. Burstein., “Anomalous Optical Absorption Limit in InSb”, Phys. Rev., Vol. 93, pp. 632-633(1954).

29. T. S. Moss, , “The Interpretation of the Properties of Indium Antimonide”, Phys. Soc. London Sect. B, Vol. 67, pp. 775-782(1954).

30. A. A. Dakhel, “Structure, refractive index dispersion and optical absorption properties of evaporated Zn–Eu oxide films”, Materials Chemistry and Physics, Vol. 81, Issue 1, pp. 56-62(2003).

31. B. Lin, Z. Fu, Y. Jia and G. Liao, “Defect photoluminescence of undoping ZnO films and its dependence on annealing condition”, J. Electrochem. Soc., Vol. 148, pp. G110-G113(2001).

無法下載圖示 全文公開日期 2011/02/01 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE