簡易檢索 / 詳目顯示

研究生: 盛信儒
Hsing-Ju Sheng
論文名稱: 大氣電漿噴射束於高分子表面處理之鞋材接合研究
Enhanced Bounding Strength of Polymeric Materials of Shoes Treated by Atmospheric Pressure Plasma Jet
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 陳品銓
Pin-Chuan Chen
廖淑娟
Shu-Chuan Liao
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 130
中文關鍵詞: 高分子聚合物鞋材噴射式大氣電漿變頻電漿電源表面極性親水性
外文關鍵詞: Polymer shoe material, Atmospheric pressure plasma jet, Frequency conversion plasma power supply, Surface energy, Hydrophilic
相關次數: 點閱:217下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

摘 要
噴射式大氣電漿近年來已廣泛應用於各種產業,本研究主要聚焦於將噴射式大氣電漿運用在製鞋產業各種相關材料的表面處理,藉由噴射式大氣電漿的材料表面清潔與改質特性,期望達到各類高分子聚合物鞋材之間的貼合面清潔,提升表面能與親水性,活化材料表面並以增加親水性官能基達到以水性塗膠完成高分子聚合物鞋材之間鍵結貼合為目的。
本研究中以噴射式大氣電漿透過不同頻率與掃描次數,並且分別以接觸角量測儀分析材料表面性能之變化與時效,場發射掃描式電子顯微鏡觀察材料表面的形貌改變程度,光學放射頻譜儀分析不同電漿參數下所產生的物種含量,並以感溫試紙模擬材料表面在不同電漿參數下的受溫情況,藉由以上的觀察與測試數據交叉比對證明使用噴射式大氣電漿於鞋材表面處理的實質成果與效益。
除此之外,在實驗結果中呈現出,除了電漿源輸出功率,電漿掃描距離,掃描速度與掃描次數之外,直流式噴射電漿電源輸出頻率的改變更會直接影響高分子材料在表面處理上的表現結果,說明了可變的電漿源輸出頻率對於高分子材料處理的重要性。
期望藉由本研究做為產業推廣的起始點,將諸多傳統產業與高分子聚合物應用相關產業製程中大量的有機溶劑使用量減低或取代,以藉此提升產業製程工業安全性與友善我們的生活環境做努力。

關鍵詞:高分子聚合物鞋材、噴射式大氣電漿、變頻電漿電源、表面極性、親水性


Abstract
Atmospheric pressure plasma jet (APPJ) has been widely used in various industries in recent years. This research focuses on the application of Atmospheric plasma jet to the surface treatment of various related materials in the footwear industry. Due to the characteristics and qualities of Atmospheric plasma jet Surface modification and cleaning to achieve all kinds of the polymer shoes material, also can improve surface energy and hydrophilicity, activate the surface of the material and increase the hydrophilic functional group to achieve purpose for the bonding between polymer materials with water-based adhesives.
In this study, atmospheric pressure plasma jet by different frequencies and scanning circles, The surface properties of the materials are analyzed by the contact angle measuring instrument, field emission scanning electron microscope (FE-SEM) is used to observe surface morphology change on the material, and the instrument analyzes the species content produced under different plasma parameters by optical emission spectroscopy (OES), Simulates the temperature condition of the material surface under different plasma parameters with the temperature sensitive test paper. Otherwise, in these results, in addition to the plasma source output power, plasma scanning distance, scanning speed and scanning times, the change of the output frequency of the DC plasma power supply will directly affect the performance of the polymer material in surface treatment. As a result, the importance of variable plasma source output frequency for polymer material processing is illustrated. Thru the cross-comparison of the above observation and test data proves the use of atmospheric plasma jet is the substantial results and benefits of surface treatment of shoe materials and industry.
It is hoped that, By this research will be used as a starting point for industrial promotion, and the use lot of organic solvents in the industrial processes related to many traditional industries and high polymer applications will be reduced or replaced, thereby enhancing the safety of industrial process industries and friendly to living environment of ours.

Keywords: Polymer shoe material, Atmospheric pressure plasma jet, Frequency conversion plasma power supply, Surface energy, Hydrophilic

目錄 第一章 緒論1 1.1 前言1 1.2 研究動機與目的1 第二章 文獻回顧2 2.1 高分子工程材料2 2.1.1 高分子材料概述2 2.1.2 天然聚合物2 2.1.3 合成聚合物2 2.1.4 塑膠類4 2.1.5 工程塑膠概述6 2.1.6 EVA (乙烯/醋酸乙烯酯共聚物)8 2.1.7 TPU (熱塑性聚氨酯)11 2.1.8 SBR (丁苯橡膠)14 2.2 高分子材料黏合機制19 2.2.1 化學表面處理20 2.2.2 大氣電漿表面處理 (Plasma Surface Treatment)20 2.3 電漿概述21 2.3.1 常壓電漿型式23 2.3.2 電漿處理於高分子材料表面化學機制 (Polymer Surface Modification By Plasma and Photons)26 第三章 研究實驗程序材料與儀器設備27 3.1 實驗程序設計 - 流程圖27 3.2 實驗材料28 3.3 實驗設備儀器與程序34 3.3.1 大氣電漿電源供應控制系統 (含主要氣源控制與調整)34 3.3.2 大氣電漿旋轉式電漿產生器37 3.3.3 接觸角量測儀 (Contact Angle Analysis)40 3.3.4 光學放射頻譜儀 (Optical Emission Spectroscopy, OES)43 3.3.5 傅立葉轉換紅外線光譜儀 (Fourier Transform Infrared Spectroscopy, FT-IR)45 3.3.6 場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope, FE-SEM)46 3.4 實驗步驟47 3.4.1 檢測試片製作47 3.4.2 檢測試片處理前表面能量測47 3.4.3 試片大氣電漿表面處理47 3.4.4 檢測試片處理後以接觸角量測儀量測並計算表面能49 3.4.5 檢測試片處理後以傅立葉轉換紅外線光譜儀進行表面量測49 第四章 結果與討論50 4.1 固定式單束電漿噴嘴與旋轉式電漿噴嘴選用考量50 4.2 不同電漿頻率與距離下之溫度51 4.3 不同電漿頻率下之光譜圖54 4.4 電漿頻率對材料之影響57 4.4.1 電漿頻率對EVA表面之影響57 4.4.2 電漿頻率對SBR表面之影響59 4.4.3 電漿頻率對TPU表面之影響61 4.5 電漿次數對材料之影響63 4.5.1 電漿次數對EVA表面之影響63 4.5.2 電漿次數對SBR表面之影響67 4.5.3 電漿次數對TPU表面之影響71 4.6 電漿頻率與次數之總比較75 4.7 電漿於材料表面處理後時效之變化77 4.7.1 電漿於EVA材料表面處理後之時效變化77 4.7.2 電漿於SBR材料表面處理後之時效變化82 4.7.3 電漿於TPU材料表面處理後之時效變化87 4.8 大氣電漿於材料表面處理後材料表面形貌之觀察SEM92 4.9 大氣電漿於材料表面處理後材料表面官能基團之觀察FT-IR97 4.10 製鞋業鞋材拉拔力測試103 4.10.1製鞋業鞋材貼合步驟與檢測標準103 4.10.2 實際貼合與拉拔力驗證104 第五章 結論與未來展望107 5.1 結論107 5.2 未來展望108 參考文獻109

6 參考文獻
[1] W. D. Callister,「材料科學與工程」,歐亞書局,(2006)。
[2] 陳英哲,「模具內的剪切操作對於PC/ABS聚摻物射出成形品抗拉強度的影響研究」,碩士論文,國立交通大學,(2006)。
[3] 龔一峰,「工程塑膠應用於機械運動元件的耐磨性研究」,碩士論文,國立成功大學,(1994)。
[4] C. M. Cepeda-Jimenez, R. Torregrosa-Macia, J. M. Martın-Martınez, “Surface Modifications of EVA Copolymers by Using RF Oxidizing and Non-Oxidizing Plasmas,” Surface and Coatings Technology, Vol. 174-175, pp. 94-99, (2003).
[5] P. Alves, S. Pinto, H. C. de Sousa, M. H. Gil, “Surface Modification of a Thermoplastic Polyurethane by Low-Pressure Plasma Treatment to Improve Hydrophilicity,” Journal of Applied Polymer Science, Vol. 122, pp. 2302-2308, (2011).
[6] 林永隆,「橡膠工業概論」,中央圖書出版社 (1982)。
[7] M. D. R. nchez, J. M. Martı´n-Martı´nez, “Surface Modifications of Vulcanized SBR Rubber by Treatment with Atmospheric Pressure Plasma Torch,” International Journal of Adhesion & Adhesives, Vol. 26, pp. 345-354, (2006).
[8] M. M. Pastor-Blas, “Adhesion Improvement of SBR Rubber by Treatment with Trichloroisocyanuric Acid Solutions in Different Esters,” International Journal of Adhesion and Adhesives, Vol. 21, pp. 325-337, (2001).
[9] C. Poisson, V. Hervais, M. F. Lacrampe, P. Krawczak, “Optimization of PE/binder/PA Extrusion Blow‐Molded Films. II. Adhesion Properties Improvement Using Binder/EVA Blends,” Journal of Applied Polymer Science, Vol. 101, pp. 118-127, (2006).
[10] N. M. Bikales, Adhesion and Bonding, New Jersey: John Wiley & Sons, (1971).
[11] R. Mahlberg, H. E. M. Niemi, F. Denes, R. M. Rowell, “Effect of Oxygen and Hexamethyldisiloxane Plasma on Morphology, Wettability and Adhesion Properties of Polypropylene and Lignocellulosics,” International Journal of Adhesion & Adhesives, Vol. 18, pp. 283-297, (1998).
[12] R. M. Paroli, K. K. Y. Liu, T. R. Simmons, “Thermoplastic Polyolefin Roofing Membranes,” Institute for Research in Construction, No. 30, (1999).
[13] Q. Zhao, Y. Liu, E. W. Abel, “Effect of Temperature on the Surface Free Energy of Amorphous Carbon Films,” Journal of Colloid and Interface Science, pp. 174-183, (2004).
[14] J. M. Schakenraad, H. J. Busscher, C. R. Wildevuur, J. Arends, “Thermodynamic Aspects of Cell Spreading on Solid Substrata,” Cell Biophysics, Vol. 13, pp. 75-91, (1988).
[15] E. Tomasetti, D. Daoust, R. Legras, P. Bertrand, P. G. Rouxhet, “Diffusion of Adhesion Promoter (CPO) into Polypropylene/Ethylene–Propylene (PP/EP) Copolymer Blends: Mechanism,” Journal of Adhesion Science and Technology, Vol. 15, pp. 1589-1600, (2001).
[16] A. P. Pijpers, R. J. Meier, “Adhesion Behaviour of Polypropylenes After Flame Treatment Determined by XPS(ESCA) Spectral Analysis,” Journal of Electron Spectroscopy and Related Phenomena, Vol. 121, pp. 299-313, (2001).
[17] M. Noeske, J. Degenhardt, S. Strudthoff, U. Lommatzsch, “Plasma Jet Treatment of Five Polymers at Atmospheric Pressure: Surface Modifications and the Relevance for Adhesion,” International Journal of Adhesion and Adhesives, Vol, 24, pp. 171-177, (2004)
[18] C. Mühlhan, H. Nowack, “Plasma Pretreatment of Polypropylene for Improved Adhesive Bonding,” Surface and Coatings Technology, Vol. 98, pp. 1107-1111, (1998).
[19] D. Hegemann, H. Brunner, C. Oehr, “Plasma Treatment of Polymers for Surface and Adhesion Improvement,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 208, pp. 281-286, (2003).
[20] D. J. Burnett, F. Thielmann, R. A. Ryntz, “Correlating Thermodynamic and Mechanical Adhesion Phenomena for Thermoplastic Polyolefins,” Journal of Coatings Technology and Research, Vol. 4, pp. 211-215, (2007).
[21] J.Comyn, “Contact Angles and Adhesive Bonding,” International Journal of Adhesion and Adhesives, Vol. 12, pp. 145-149, (1992).
[22] I. Lee, R. P. Wool, “Thermodynamic Analysis of Polymer‐Solid Adhesion: Sticker and Receptor Group Effects,” Journal of Polymer Science Part B Polymer Physics, Vol. 40, pp. 2343-2353, (2002).
[23] C. Cheng, Z. Liye, R. J. Zhan, “Surface Modification of Polymer Fibre by the New Atmospheric Pressure Cold Plasma Jet,” Surface and Coatings Technology, Vol. 200, pp. 6659-6665, (2006).
[24] A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, R. F. Hicks, “The Atmospheric-Pressure Plasma Jet: A Review and Comparison to Other Plasma Sources,” IEEE Transactions on Plasma Science, Vol. 26, pp. 1685-1694, (1998).
[25] 沈柏村,「以氦氣為主的平板型常壓電漿束特性之實驗研究」,碩士論文,國立交通大學 (2011)。
[26] 林哲蔚,「常壓電漿高聚能型噴射束製備奈米金顆粒之研究」,碩士論文,國立台灣科技大學 (2015)。
[27] C. M. Chan, T. M. Ko, H. Hiraoka, “Polymer Surface Modification by Plasmas and Photons,” Surface Science Reports, Vol. 24, pp. 4-10, (1995).
[28] Huntsman, “TPU chemistry.” Internet: http://www.huntsman.com/polyurethanes/a/Products/Thermoplastic%20polyurethanes/Products%20-%20Chemistry.
[29] W. A. Zisman, “Relation of the Equilibrium Contact Angle to Liquid Solid Constitution,” Advances in Chemistry American Chemical Society: Washington, Vol. 43, pp. 1-51, (1964).
[30] D.Y. Kwok, A.W. Neumann, “Contact Angle Measurement Contact Angle Interpretation,” Advances in Colloid and Interface Science, Vol. 81, pp. 167-249, (1999).
[31] S. Siboni, C. D. Volpe, D. Maniglio, M. Brugnara, “The Solid Surface Free Energy Calculation: II. The Limits of the Zisman and of the “Equation-of-State” Approaches,” Journal of Colloid and Interface Science, Vol. 271, pp. 454-472, (2004).
[32] P. Zdenka, S. K. Karin, S. S. Majda, K. Tatjana, “Determining the Surface Free Energy of Cellulose Materials with the Powder Contact Angle Method,” Textile Research Journal, Vol. 74, pp. 55-62, (2004).
[33] 黃耀南,「利用Owen-Wendt-Rabel and Kaelble 方法對液晶表面能探討」,碩士論文,國立中山大學 (2012)。
[34] National Institute of Standards and Technology, “Atomic Spectra Database.” Internet: https://www.nist.gov/pml/atomic-spectra-database.
[35] 王玠龍,柯季良,郭俞麟,「旋轉式常壓電漿噴射束沉積類氧化矽薄膜與塗佈FAS於AZ91D鎂合金之抗蝕特性研究」,106年度防蝕工程年會暨論文發表會,中華民國防蝕工程學會 (2017)。
[36] 程德恩,「功率源頻率對大氣電漿束之影響」,碩士論文,國立清華大學 (2013)。
[37] 蕭宇呈,「以常壓電漿製備二氧化鈰疏水複合薄膜與其抗腐蝕性應用」,碩士論文,國立臺灣科技大學 (2019)。
[38] H. Akiyama, K. Hasegawa, T. Sekigawa, N. Yamazaki, “Atmospheric Pressure Plasma Treatment for Composites Bonding,” Mitsubishi Heavy Industries Technical Review, Vol. 55, (2018).
[39] 陳濡言,「以低溫常壓電漿表面改質軟性基板及接枝聚合溫度敏感型高分子」,碩士論文,國立臺灣科技大學 (2012)。
[40] R. Pogreb, R. Loew, E. Bormashenko, G. Whyman, V. Multanen, E. Shulzinger, A. Abramovich, D. Rozban, A. Shulzinger, E. Zussman, A. Arinstein, G. Vasilyev, A. Y. Malkin, “Relaxation Spectra of Polymers and Phenomena of Electrical and Hydrophobic Recovery: Interplay Between Bulk and Surface Properties of Polymers,” Journal of Polymer Science Part B: Polymer Physics, Vol. 55, pp. 198-205, (2016).
[41] C. Xingxing, H. Long, D. Changji, N. Lihui, Z. Yong, C. Zhe, “Influenceof Vinyl Acetate Content on the Surface Hydrophobic Recovery of Ethylene Vinyl Acetate Copolymer after Plasma Modification,” Chemistry Select, Vol. 4, pp. 1763-1765, (2019).
[42] P. Alves, R. Cardoso, T. R. Correia, B. P. Antunes, I. J. Correia, P. Ferreira, “Surface Modification of Polyurethane Films by Plasma and Ultravioletlight to Improve Haemocompatibility for Artificial Heart Valves,” Colloids and Surfaces B: Biointerfaces, Vol. 113, pp. 25-32, (2014).
[43] Y. Zhu, “Influence of Corona Discharge on Hydrophobicity of Silicone Rubber Used for Outdoor Insulation,” Polymer Testing, Vol. 74, pp. 14-20, (2019).
[44] D. A. Skoog、F. J. Holler、S. R. Crouch,「儀器分析 : 精華版」,湯姆生出版社 (2007)。
[45] R. M. M. Paiva, E. A. S. Marques, L. F. M. da Silva, M. A. P. Vaz, “Importance of the Surface Treatment in the Peeling Strength of Joints for the Shoes Industry,” Applied Adhesion Science, Vol. 1, (2013).
[46] W. Limited, “Footwear Quality Standard and Testing Requirements,” Woolworths Quality Assurance, (2013).
[47] L. C. Engineering, “Study for the Footwear Criteria Revision,” European Commission, (2008).
[48] S. Bauer, R. Joas, P. Hofbauer, C. Tebert, S. Krause, D. Jepsen, M. Woodfield, G. Gordon, “Guidance on VOC Substitution and Reduction for Activities Covered by the VOC Solvents Emissions Directive,” European Commission - DG Environment, (2009).

QR CODE