簡易檢索 / 詳目顯示

研究生: 凃皓仁
Hao-Jen Tu
論文名稱: 應用於Ka頻段低軌道衛星通訊發射端七位元數位控制向量合成相移器
A Ka-band 7-bit Digital Controlled Vector-Sum Phase Shifter for LEO Satellite Communications Transmitter
指導教授: 陳筱青
Hsiao-Chin Chen
口試委員: 楊成發
姚嘉瑜
陳筱青
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 64
中文關鍵詞: 主動式相移器向量合成相移器電流數位類比轉換器相位陣列低軌道衛星通信
外文關鍵詞: Active phase shifters, vector sum phase shifter (VSPS), current DAC, phased arrays, LEO Satellite Communications (SATCOM)
相關次數: 點閱:52下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出了一種用於LEO衛星通信的27-31 GHz 七位元數位控制向量合成相移器, 此晶片採用台積電 90 奈米 CMOS製程。相移器由正交全通濾波器(QAF)和由一八位元電流數位類比轉換器(IDAC)偏流的類比差動加法器組成,其中透過八位元電流數位類比轉換器控制類比加法器的電流以及兩位元的象限選擇,使最小位元可以產生2.8125度相移,最後產生從0到360°的相移。本論文藉由正交全通濾波器和類比加法器的級間匹配優化後,可最大程度地減少系統損耗,因此與其他主動式相移器相比,此相移器能夠以更低的功耗實現更高的增益。此相移器 128 個相移狀態是從八位元IDAC和兩位元象限選擇生成的 1024 個相移狀態中選取, 因此本電路可以實現更低均方根相位誤差。根據測量結果,相移器的RMS相位誤差為0.18°至0.21°,RMS振幅誤差為0.68至0.9 dB。在27-31 GHz頻段內,平均增益為-1.36至0.13 dB。晶片核心尺寸為 0.63 mm2。相移器在1.2 V供應電壓下總功耗為10mW。


    This paper presents a 27-31GHz 7-bit digital control vector-sum phase shifter for LEO satellite communications transmitter which is fabricated in a 90-nm CMOS process. The phase shifter consists of a quadrature all-pass filter (QAF) and an analog vector adder. The inter-stage matching work is designed between QAF and the analog differential adder to minimize the insertion loss and the analog differential adder that is biased with an 8-bit current digital-to-analog converter (IDAC), where the IDAC is used to control the bias current of the analog adder so that the phase shift from 0 to 360° can be generated in steps of 2.8°. The 128 phase shift states of this phase shifter are selected from the 1024 phase shift states generated by the 8-bit IDAC and 2-bit quadrant selection so that this circuit can achieve lower RMS phase error. Over the band of interest, the phase shifter achieves the average gain of 0.13 ~ -1.36 dB. The RMS amplitude error of 0.68 ~ 0.9 dB and the RMS phase error of 0.18 ~ 0.21°. The output P1dB is -1 ~ -7.5 dBm over 27-31 GHz. Consuming the power of 10 mW with 1.2 V supply voltage. The chip core area is 0.63 mm2 .

    摘要 ..............................................................................................IV Abstract...........................................................................V 致謝 ............................................................................VI Contents..................................................................................VIII List of Figures.................................................................X List of Tables.....................................................XIII Chapter 1 Introduction................................................. 1 1.1 Motivation............................................................ 1 1.2 Organization ................................................5 Chapter 2 System Structure ....................................................... 6 Chapter 3 Circuit Design ............................................... 8 3.1 Quadrature All-Pass Filter .......................................... 8 3.1.1 Basic Operation ........................................................ 8 3.1.2 Loading Effect ....................................................... 10 3.2 Analog Differential Adder..................................... 16 3.3 Current DAC......................................................... 21 3.3.1 The Current-mode DAC Architecture and Operation ........................... 22 3.3.2 Bias Circuit (including Gate Leakage Compensation) .......................... 26 3.3.3 Design Procedure............................................. 31 3.3.4 Layout........................................................................... 37 Chapter 4 Experiment Result................................................. 39 4.1 Measurement Setup ..................................................... 39 4.2 Measurement Results................................................... 44 4.3 Comparation Table ................................................................ 55 Chapter 5 Conclusion .................................................... 59 Reference ......................................................... 60

    [1] N. Mazor, O. Katz, R. Ben-Yishay, D. Liu, A. V. Garcia and D. Elad, "SiGe based Ka-band reflection type phase shifter for integrated phased array transceivers," 2016 IEEE MTT-S International Microwave Symposium (IMS), San Francisco, CA, USA, 2016, pp. 1-4
    [2] T. -W. Li and H. Wang, "A Millimeter-Wave Fully Integrated Passive Reflection-Type Phase Shifter With Transformer-Based Multi-Resonance Loads for 360° Phase Shifting," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 4, pp. 1406-1419, April 2018
    [3] R. Garg and A. S. Natarajan, "A 28-GHz Low-Power Phased-Array Receiver Front-End With 360° RTPS Phase Shift Range," in IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 11, pp. 4703-4714, Nov. 2017
    [4] P. Gu and D. Zhao, "Ka-Band CMOS 360° Reflective-Type Phase Shifter with ±0.2 dB Insertion Loss Variation Using Triple-Resonating Load and Dual-Voltage Control Techniques," 2018 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Philadelphia, PA, USA, 2018, pp. 140-143
    [5] A. Basaligheh, P. Saffari, S. Rasti Boroujeni, I. Filanovsky and K. Moez, "A 28–30 GHz CMOS Reflection-Type Phase Shifter With Full 360° Phase Shift Range," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 11, pp. 2452-2456, Nov. 2020
    [6] C. -Y. Kim, D. -W. Kang and G. M. Rebeiz, "A 44–46-GHz 16-Element SiGe BiCMOS High-Linearity Transmit/Receive Phased Array," in IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 3, pp. 730-742, March 2012
    [7] J. G. Yang and K. Yang, "Ka-Band 5-Bit MMIC Phase Shifter Using InGaAs PIN Switching Diodes," in IEEE Microwave and Wireless Components Letters, vol. 21, no. 3, pp. 151-153, March 2011.
    [8] K. -J. Koh, J. W. May and G. M. Rebeiz, "A Millimeter-Wave (40–45 GHz) 16-Element Phased-Array Transmitter in 0.18-$mu$ m SiGe BiCMOS Technology," in IEEE Journal of Solid-State Circuits, vol. 44, no. 5, pp. 1498-1509, May 2009.
    [9] Tsai, J‐H., F‐M. Lin, and H. Xiao. "Low RMS phase error 28 GHz 5‐bit switch type phase shifter for 5G applications." Electronics Letters vol. 54 , no.20 p1184-p1185 ,2018.
    [10] W. Deng, R. Wu, Z. Chen, M. Ding, H. Jia and B. Chi, "A 35-GHz TX and RX Front End With High TX Output Power for Ka-Band FMCW Phased-Array Radar Transceivers in CMOS Technology," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 28, no. 10, pp. 2089-2098, Oct. 2020.
    [11] J. -H. Tsai, T. -T. He and W. -H. Lin, "A K/Ka-Band Low RMS Phase Error 5-Bit CMOS Phase Shifter," 2021 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Hualien, Taiwan, 2021, pp. 1-3.
    [14] C. Liu et al., "A Ka-Band Single-Chip SiGe BiCMOS Phased-Array Transmit/Receive Front-End," in IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 11, pp. 3667-3677, Nov. 2016.
    [15] J. -H. Tsai, Y. -L. Tung and Y. -H. Lin, "A 27–42-GHz Low Phase Error 5-Bit Passive Phase Shifter in 65-nm CMOS Technology," in IEEE Microwave and Wireless Components Letters, vol. 30, no. 9, pp. 900-903, Sept. 2020.
    [16] M. Jung and B. -W. Min, "A Compact Ka-Band 4-bit Phase Shifter With Low Group Delay Deviation," in IEEE Microwave and Wireless Components Letters, vol. 30, no. 4, pp. 414-416, April 2020.
    [17] Y. -H. Lin and Z. -M. Tsai, "Frequency-Reconfigurable Phase Shifter Based on a 65-nm CMOS Process for 5G Applications," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 8, pp. 2825-2829, Aug. 2021.
    [18] K. -J. Koh and G. M. Rebeiz, "0.13-μm CMOS Phase Shifters for X-, Ku-, and K-Band Phased Arrays," in IEEE Journal of Solid-State Circuits, vol. 42, no. 11, pp. 2535-2546, Nov. 2007.
    [19] K. -J. Koh and G. M. Rebeiz, "A 6–18 GHz 5-bit active phase shifter," 2010 IEEE MTT-S International Microwave Symposium, Anaheim, CA, USA, 2010, pp. 792-795.
    [20] S. P. Sah, X. Yu and D. Heo, "Design and Analysis of a Wideband 15–35-GHz Quadrature Phase Shifter With Inductive Loading," in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 8, pp. 3024-3033, Aug. 2013.
    [21] K. -J. Koh, J. W. May and G. M. Rebeiz, "A Millimeter-Wave (40–45 GHz) 16-Element Phased-Array Transmitter in 0.18-$mu$ m SiGe BiCMOS Technology," in IEEE Journal of Solid-State Circuits, vol. 44, no. 5, pp. 1498-1509, May 2009.
    [22] T. Shimura, T. Ohshima and Y. Ohashi, "Low power consumption vector-sum phase shifters using zero-pi amplifiers for millimeter-wave beamforming," 2017 47th European Microwave Conference (EuMC), Nuremberg, Germany, 2017, pp. 42-45.
    [23] Y. Yao, Z. Li, G. Cheng and L. Luo, "A 6-bit active phase shifter for Ku-band phased arrays," 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, 2017, pp. 1-5.
    [24] Z. Duan, Y. Wang, W. Lv, Y. Dai and F. Lin, "A 6-bit CMOS Active Phase Shifter for Ku-Band Phased Arrays," in IEEE Microwave and Wireless Components Letters, vol. 28, no. 7, pp. 615-617, July 2018.
    [25] Y. -T. Chang, Z. -W. Ou, H. Alsuraisry, A. Sayed and H. -C. Lu, "A 28-GHz Low-Power Vector-Sum Phase Shifter Using Biphase Modulator and Current Reused Technique," in IEEE Microwave and Wireless Components Letters, vol. 28, no. 11, pp. 1014-1016, Nov. 2018.
    [26] P. V. Testa, L. Szilagyi, Z. Tibensky, C. Carta and F. Ellinger, "A Compact Vector-Sum Phase Shifter for 5G Applications in 22 nm FD-SOI CMOS," 2020 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Hiroshima, Japan, 2020, pp. 238-240.
    [27] Y. Xiong, X. Zeng and J. Li, "A Frequency-Reconfigurable CMOS Active Phase Shifter for 5G mm-Wave Applications," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 10, pp. 1824-1828, Oct. 2020.
    [28] J. Park, G. Jeong and S. Hong, "A Ka-Band Variable-Gain Phase Shifter With Multiple Vector Generators," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 6, pp. 1798-1802, June 2021.
    [29] F. Qiu, H. Zhu, L. Wu, W. Che and Q. Xue, "A 15–38 GHz Vector-Summing Phase-Shifter With 360° Phase-Shifting Range Using Improved I/Q Generator," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 10, pp. 3199-3203, Oct. 2021.
    [30] J. Zhou, H. J. Qian and X. Luo, "High-Resolution Wideband Vector-Sum Digital Phase Shifter With On-Chip Phase Linearity Enhancement Technology," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 6, pp. 2457-2469, June 2021.
    [31] N. Singhal and S. M. R. Hasan, "A Novel mm-Wave Analog Phase Shifter Employing Closed-Loop Error-Feedback Self-Tuning I/Q Generation," in IEEE Microwave and Wireless Components Letters, vol. 32, no. 7, pp. 887-890, July 2022.
    [32] J. Pang, R. Kubozoe, Z. Li, M. Kawabuchi and K. Okada, "A 28GHz CMOS Phase Shifter Supporting 11.2Gb/s in 256QAM with an RMS Gain Error of 0.13dB for 5G Mobile Network," 2018 48th European Microwave Conference (EuMC), Madrid, Spain, 2018, pp. 807-810.
    [33] B. Cetindogan, E. Ozeren, B. Ustundag, M. Kaynak and Y. Gurbuz, "A 6 Bit Vector-Sum Phase Shifter With a Decoder Based Control Circuit for X-Band Phased-Arrays," in IEEE Microwave and Wireless Components Letters, vol. 26, no. 1, pp. 64-66, Jan. 2016.
    [34] Delos, Peter, Bob Broughton, and Jon Kraft. "Phased array antenna patterns-part 1: Linear array beam characteristics and array factor." Analog Dialogue 54.2 (2020): 1-8
    [35] Giotta et al. "LEAKAGE CURRENT COMPENSATION," U.S. Patent Application US20110121888A1, May 26, 2011.

    無法下載圖示
    全文公開日期 2034/02/01 (校外網路)

    QR CODE