簡易檢索 / 詳目顯示

研究生: Ricko Septian Wijaya
Ricko - Septian Wijaya
論文名稱: Synthesis of Graphene-supported Sn nanoparticles for Anode Materials of Lithium Ion Batteries
Synthesis of Graphene-supported Sn nanoparticles for Anode Materials of Lithium Ion Batteries
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 蘇威年
Wei-Nien Su
鄭銘堯
Ming-Yao Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 80
中文關鍵詞: reductionhydrothermalLithium-ion batterycobaltureatin-graphene compositeanode
外文關鍵詞: cobalt, reduction, hydrothermal, Lithium-ion battery, urea, tin-graphene composite, anode
相關次數: 點閱:304下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Lithium-ion battery is a type of rechargeable batteries as a major energy storage device. One of the most notable topics is to develop high performance Li-ion battery anode materials. Current commercial anodes are made of graphite-based materials, that only has a specific capacity of 372 mAh g-1. Scientists are now looking for various candidates with higher capacity and longer endurance life. One of them is Sn-carbon composite. Sn or SnO2 can be a potential anode with high capacity, but there’re still various challenges, such as the Li2O phase formation and volume expansion of the Sn phase constitute the main barriers that have to be overcome.
    To solve the drawbacks, cobalt as well as urea are introduced. The introduction of urea changes the pH of the solution in the hydrothermal process. Urea gives better dispersion of nano-sized SnO2 on the Graphene Oxide Sheets. The minimal grain size of SnO2 is obtained at pH 4.1 with the amount of urea 1 gram. The increase of reduction temperature makes the weight percent of carbon in the sample decrease. SnO2 is totally reduced to pure Sn for all samples at 650 oC. The complete reduction to Sn from SnO2 is preferred because Sn formation reduces the first cycle irreversibility.
    By adding cobalt, SnO2 is fully reduced to Sn all the samples with 8 different atomic percentage of Co to Sn at 550 oC. Cobalt makes the better nucleation of Sn nanoparticles on Graphene Oxide Sheets and restricts the growth of Sn particle size. RGO-1-Sn-1-Co/C-H synthesized by two-step method (1% atomic percentage of Co to Sn) gives the best performance among the others because it gives the minimum Sn particle size and also the highest Sn weight percent. This material can be a candidate for an advanced anode material with high 1st columbic efficiency (74.2%), high capacity at 30th cycle (635.7 mAh/g at 200 mA/g current density), and also good capacity retention.


    Lithium-ion battery is a type of rechargeable batteries as a major energy storage device. One of the most notable topics is to develop high performance Li-ion battery anode materials. Current commercial anodes are made of graphite-based materials, that only has a specific capacity of 372 mAh g-1. Scientists are now looking for various candidates with higher capacity and longer endurance life. One of them is Sn-carbon composite. Sn or SnO2 can be a potential anode with high capacity, but there’re still various challenges, such as the Li2O phase formation and volume expansion of the Sn phase constitute the main barriers that have to be overcome.
    To solve the drawbacks, cobalt as well as urea are introduced. The introduction of urea changes the pH of the solution in the hydrothermal process. Urea gives better dispersion of nano-sized SnO2 on the Graphene Oxide Sheets. The minimal grain size of SnO2 is obtained at pH 4.1 with the amount of urea 1 gram. The increase of reduction temperature makes the weight percent of carbon in the sample decrease. SnO2 is totally reduced to pure Sn for all samples at 650 oC. The complete reduction to Sn from SnO2 is preferred because Sn formation reduces the first cycle irreversibility.
    By adding cobalt, SnO2 is fully reduced to Sn all the samples with 8 different atomic percentage of Co to Sn at 550 oC. Cobalt makes the better nucleation of Sn nanoparticles on Graphene Oxide Sheets and restricts the growth of Sn particle size. RGO-1-Sn-1-Co/C-H synthesized by two-step method (1% atomic percentage of Co to Sn) gives the best performance among the others because it gives the minimum Sn particle size and also the highest Sn weight percent. This material can be a candidate for an advanced anode material with high 1st columbic efficiency (74.2%), high capacity at 30th cycle (635.7 mAh/g at 200 mA/g current density), and also good capacity retention.

    ABSTRACT ii ACKNOWLEDGEMENT iii TABLE OF CONTENTS iv LIST OF FIGURES vi LIST OF TABLES viii CHAPTER I INTRODUCTION 1 1.1 Background 1 1.2 Motivation 1 1.3 Research Purposes 2 CHAPTER II LITERATURE REVIEW 3 2.1 Definition of Nanoparticle 3 2.2 Solvothermal / Hydrothermal Synthesis 3 2.3 Graphene Oxide 3 2.4 Anode Material for Lithium Ion Battery 5 2.4.1 Graphite and Lithium Ion Battery 5 2.4.2 Sn-based Material Nanocomposites as Promising Anode Material 7 CHAPTER III RESEARCH METODOLOGY 19 3.1 Research Design 19 3.2 Materials 20 3.3 Equipment 21 3.4 Experimental Procedure 22 3.4.1 Preparation of Graphene Oxide [67] 22 3.4.2 Preparation of GO-x-SnO2/C 23 3.4.3 Preparation of GO-1-SnO2-y-Co/C 24 3.4.4 Preparation of GO-1-SnO2-1-Co/C via One Step Method 25 3.4.5 Preparation of Active Materials 26 3.4.6 Electrochemical Cell Assembly 26 3.4.7 Sample Characterization 27 3.4.7.1 Scanning Electron Microscope (SEM) 27 3.4.7.2 X-Ray Diffraction (XRD) 27 3.4.7.3 Thermo Gravimetric Analysis (TGA) 28 3.4.7.4 ICP-AES (Inductively Coupled Plasma Atomic Emission Spectroscopy 28 3.4.7.5 Battery testing system (Ubiq Machine) 28 CHAPTER IV RESULTS AND DISCUSSION 29 4.1 Characterization of GO-x-SnO2/C (Hydrothermal Product) 29 4.2 Characterization of RGO-x-SnO2/C-H (400 oC Thermal Reduction Product) 33 4.3 Characterization of 550 oC Thermal Reduction Product 35 4.4 Characterization of 600 oC Thermal Reduction Product 37 4.5 Characterization of RGO-x-Sn/C-H (650 oC Thermal Reduction Product) 38 4.6 Characterization of RGO-1-Sn-y-Co/C-H 42 4.7 Characterization of RGO-1-Sn-1-Co/C-H (One Step Method) 46 4.8 Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) 48 4.9 Charge-Discharge Performance 49 CHAPTER V CONCLUSIONS 62 REFERENCES 64

    1. Bruce, P. G., Scrosati, B., & Tarascon, J. M. (2008). Nanomaterials for rechargeable lithium batteries. Angewandte Chemie International Edition, 47(16), 2930-2946.
    2. Chen, D., Tang, L., & Li, J. (2010). Graphene-based materials in electrochemistry. Chemical Society Reviews, 39(8), 3157-3180.
    3. Pumera, M. (2011). Graphene-based nanomaterials for energy storage. Energy & Environmental Science, 4(3), 668-674.
    4. Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., & Geim, A. K. (2006). Raman spectrum of graphene and graphene layers. Physical review letters, 97(18), 187401.
    5. Yoo, E., Kim, J., Hosono, E., Zhou, H. S., Kudo, T., & Honma, I. (2008). Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Letters, 8(8), 2277-2282.
    6. Wu, Z. S., Ren, W., Wen, L., Gao, L., Zhao, J., Chen, Z., Zhou, G., Li, F. & Cheng, H. M. (2010). Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS nano, 4(6), 3187-3194.
    7. Guo, P., Song, H., & Chen, X. (2009). Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries. Electrochemistry Communications, 11(6), 1320-1324.
    8. Wang, C., Li, D., Too, C. O., & Wallace, G. G. (2009). Electrochemical properties of graphene paper electrodes used in lithium batteries. Chemistry of Materials, 21(13), 2604-2606.
    9. Reddy, A. L. M., Srivastava, A., Gowda, S. R., Gullapalli, H., Dubey, M., & Ajayan, P. M. (2010). Synthesis of nitrogen-doped graphene films for lithium battery application. Acs Nano, 4(11), 6337-6342.
    10. Chen, Z., Cao, Y., Qian, J., Ai, X., & Yang, H. (2010). Facile synthesis and stable lithium storage performances of Sn-sandwiched nanoparticles as a high capacity anode material for rechargeable Li batteries. Journal of Materials Chemistry, 20(34), 7266-7271.
    11. Wang, H., Cui, L. F., Yang, Y., Sanchez Casalongue, H., Robinson, J. T., Liang, Y., Cui, Y., & Dai, H. (2010). Mn3O4− graphene hybrid as a high-capacity anode material for lithium ion batteries. Journal of the American Chemical Society, 132(40), 13978-13980.
    12. Kim, H., Kim, S. W., Park, Y. U., Gwon, H., Seo, D. H., Kim, Y., & Kang, K. (2010). SnO2/graphene composite with high lithium storage capability for lithium rechargeable batteries. Nano Research, 3(11), 813-821.
    13. Chen, S. Q., & Wang, Y. (2010). Microwave-assisted synthesis of a Co3O4–graphene sheet-on-sheet nanocomposite as a superior anode material for Li-ion batteries. Journal of Materials Chemistry, 20(43), 9735-9739.
    14. Sun, Y., Hu, X., Luo, W., & Huang, Y. (2011). Self-assembled hierarchical MoO2/graphene nanoarchitectures and their application as a high-performance anode material for lithium-ion batteries. ACS nano, 5(9), 7100-7107.
    15. Yang, S., Feng, X., Ivanovici, S., & Mullen, K. (2010). Fabrication of Graphene‐Encapsulated Oxide Nanoparticles: Towards High‐Performance Anode Materials for Lithium Storage. Angewandte Chemie International Edition, 49(45), 8408-8411.
    16. Murugan, A. V., Muraliganth, T., & Manthiram, A. (2009). Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy strorage. Chemistry of Materials, 21(21), 5004-5006.
    17. Cheng, M. Y., Hwang, C. L., Pan, C. J., Cheng, J. H., Ye, Y. S., Rick, J. F., & Hwang, B. J. (2011). Facile synthesis of SnO2-embedded carbon nanomaterials via glucose-mediated oxidation of Sn particles. Journal of Materials Chemistry, 21(29), 10705-10710.
    18. Winter, M., &Brodd, R. J. (2004). What are batteries, fuel cells, and supercapacitors?.Chemical reviews, 104(10), 4245-4270.
    19. Nishi, Y. (2001). The development of lithium ion secondary batteries. The Chemical Record, 1(5), 406-413.
    20. Li, H., Wang, Z., Chen, L., & Huang, X. (2009). Research on Advanced Materials for Li‐ion Batteries. Advanced Materials, 21(45), 4593-4607.
    21. Wang, H., Yang, Y., Liang, Y., Robinson, J. T., Li, Y., Jackson, A., Cui, Y. & Dai, H. (2011). Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability. Nano letters, 11(7), 2644-2647.
    22. Etacheri, V., Marom, R., Elazari, R., Salitra, G., & Aurbach, D. (2011). Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science, 4(9), 3243-3262.
    23. Marom, R., Amalraj, S. F., Leifer, N., Jacob, D., & Aurbach, D. (2011). A review of advanced and practical lithium battery materials. Journal of Materials Chemistry, 21(27), 9938-9954.
    24. Nakajima, T., Gupta, V., Ohzawa, Y., Koh, M., Singh, R. N., Tressaud, A., & Durand, E. (2002). Electrochemical behavior of plasma-fluorinated graphite for lithium ion batteries. Journal of power sources, 104(1), 108-114.
    25. Yaakov, D., Gofer, Y., Aurbach, D., & Halalay, I. C. (2010). On the Study of Electrolyte Solutions for Li-Ion Batteries That Can Work Over a Wide Temperature Range. Journal of The Electrochemical Society, 157(12), A1383-A1391.
    26. Poizot, P., Laruelle, S., Grugeon, S., Dupont, L., & Tarascon, J. M. (2000). Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 407(6803), 496-499.
    27. Lee, K. T., Jung, Y. S., & Oh, S. M. (2003). Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries. Journal of the American Chemical Society, 125(19), 5652-5653.
    28. Beaulieu, L. Y., Hatchard, T. D., Bonakdarpour, A., Fleischauer, M. D., & Dahn, J. R. (2003). Reaction of Li with alloy thin films studied by in situ AFM. Journal of The Electrochemical Society, 150(11), A1457-A1464.
    29. Park, M. H., Kim, K., Kim, J., & Cho, J. (2010). Flexible Dimensional Control of High‐Capacity Li‐Ion‐Battery Anodes: From 0D Hollow to 3D Porous Germanium Nanoparticle Assemblies. Advanced Materials, 22(3), 415-418.
    30. Zhou, H., Zhu, S., Hibino, M., Honma, I., & Ichihara, M. (2003). Lithium Storage in Ordered Mesoporous Carbon (CMK‐3) with High Reversible Specific Energy Capacity and Good Cycling Performance. Advanced Materials, 15(24), 2107-2111.
    31. Seong, I. W., Kim, K. T., & Yoon, W. Y. (2009). Electrochemical behavior of a lithium-pre-doped carbon-coated silicon monoxide anode cell. Journal of Power Sources, 189(1), 511-514.
    32. Park, M. S., Kang, Y. M., Wang, G. X., Dou, S. X., & Liu, H. K. (2008). The effect of morphological modification on the electrochemical properties of SnO2 nanomaterials. Advanced Functional Materials, 18(3), 455-461.
    33. Lou, X. W., Wang, Y., Yuan, C., Lee, J. Y., & Archer, L. A. (2006). Template‐Free Synthesis of SnO2 Hollow Nanostructures with High Lithium Storage Capacity. Advanced Materials, 18(17), 2325-2329.
    34. McFarland, A. D., & Van Duyne, R. P. (2003). Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano letters, 3(8), 1057-1062.
    35. Jiang, Z. J., Liu, C. Y., & Sun, L. W. (2005). Catalytic properties of silver nanoparticles supported on silica spheres. The Journal of Physical Chemistry B, 109(5), 1730-1735.
    36. Jain, P., & Pradeep, T. (2005). Potential of silver nanoparticle‐coated polyurethane foam as an antibacterial water filter. Biotechnology and bioengineering, 90(1), 59-63.
    37. Chen, X., & Schluesener, H. J. (2008). Nanosilver: a nanoproduct in medical application. Toxicology letters, 176(1), 1-12.
    38. Liu, B., & Zeng, H. C. (2003). Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. Journal of the American Chemical Society, 125(15), 4430-4431.
    39. Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature materials, 6(3), 183-191.
    40. Neto, A. C., Guinea, F., Peres, N. M. R., Novoselov, K. S., & Geim, A. K. (2009). The electronic properties of graphene. Reviews of modern physics, 81(1), 109.
    41. Novoselov, K. S., Jiang, Z., Zhang, Y., Morozov, S. V., Stormer, H. L., Zeitler, U., & Geim, A. K. (2007). Room-temperature quantum Hall effect in graphene. Science, 315(5817), 1379-1379.
    42. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666-669.
    43. Young, A. F., & Kim, P. (2009). Quantum interference and Klein tunnelling in graphene heterojunctions. Nature Physics, 5(3), 222-226.
    44. Morozov, S. V., Novoselov, K. S., Katsnelson, M. I., Schedin, F., Elias, D. C., Jaszczak, J. A., & Geim, A. K. (2008). Giant intrinsic carrier mobilities in graphene and its bilayer. Physical Review Letters, 100(1), 016602.
    45. Mayorov, A. S., Gorbachev, R. V., Morozov, S. V., Britnell, L., Jalil, R., Ponomarenko, L. A., & Geim, A. K. (2011). Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano letters, 11(6), 2396-2399.
    46. Bolotin, K. I., Sikes, K. J., Hone, J., Stormer, H. L., & Kim, P. (2008). Temperature-dependent transport in suspended graphene. Physical review letters, 101(9), 096802.
    47. Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, C. N. (2008). Superior thermal conductivity of single-layer graphene. Nano letters, 8(3), 902-907.
    48. Dan, Y., Lu, Y., Kybert, N. J., Luo, Z., & Johnson, A. C. (2009). Intrinsic response of graphene vapor sensors. Nano Letters, 9(4), 1472-1475.
    49. Liang, Y., Li, Y., Wang, H., & Dai, H. (2013). Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. Journal of the American Chemical Society, 135(6), 2013-2036.
    50. Guo, C. X., & Li, C. M. (2011). A self-assembled hierarchical nanostructure comprising carbon spheres and graphene nanosheets for enhanced supercapacitor performance. Energy & Environmental Science, 4(11), 4504-4507.
    51. Brownson, D. A., Kampouris, D. K., & Banks, C. E. (2011). An overview of graphene in energy production and storage applications. Journal of Power Sources, 196(11), 4873-4885.
    52. Hou, J., Shao, Y., Ellis, M. W., Moore, R. B., & Yi, B. (2011). Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries. Physical Chemistry Chemical Physics, 13(34), 15384-15402.
    53. Wang, D., Choi, D., Li, J., Yang, Z., Nie, Z., Kou, R., & Liu, J. (2009). Self-assembled TiO2–graphene hybrid nanostructures for enhanced Li-ion insertion. ACS nano, 3(4), 907-914.
    54. Chen, S., Chen, P., Wu, M., Pan, D., & Wang, Y. (2010). Graphene supported Sn–Sb@ carbon core-shell particles as a superior anode for lithium ion batteries. Electrochemistry Communications, 12(10), 1302-1306.
    55. Becerril, H. A., Mao, J., Liu, Z., Stoltenberg, R. M., Bao, Z., & Chen, Y. (2008). Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS nano, 2(3), 463-470.
    56. Cabana, J., Monconduit, L., Larcher, D., & Palacin, M. R. (2010). Beyond Intercalation‐Based Li‐Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions. Advanced Materials, 22(35), E170-E192.
    57. Marom, R., Amalraj, S. F., Leifer, N., Jacob, D., & Aurbach, D. (2011). A review of advanced and practical lithium battery materials. Journal of Materials Chemistry, 21(27), 9938-9954.
    58. Wang, G., Wang, B., Wang, X., Park, J., Dou, S., Ahn, H., & Kim, K. (2009). Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries. Journal of Materials Chemistry, 19(44), 8378-8384.
    59. Zhang, W. J. (2011). Lithium insertion/extraction mechanism in alloy anodes for lithium-ion batteries. Journal of Power Sources, 196(3), 877-885.
    60. Zhang, W. J. (2011). A review of the electrochemical performance of alloy anodes for lithium-ion batteries. Journal of Power Sources, 196(1), 13-24.
    61. Park, C. M., Kim, J. H., Kim, H., & Sohn, H. J. (2010). Li-alloy based anode materials for Li secondary batteries. Chemical Society Reviews, 39(8), 3115-3141.
    62. Wen, Z., Cui, S., Kim, H., Mao, S., Yu, K., Lu, G., & Chen, J. (2012). Binding Sn-based nanoparticles on graphene as the anode of rechargeable lithium-ion batteries. Journal of Materials Chemistry, 22(8), 3300-3306.
    63. Zhu, J., Wang, D., Wang, L., You, W., & Wang, Q. (2012). Facile Synthesis of SnS-Graphene Nanocomposites with High Lithium Storage Capacity. Int. J. Electrochem. Sci, 7, 9732-9737.
    64. Wang, G. X., Yao, J., Ahn, J. H., Liu, H. K., & Dou, S. X. (2004). Electrochemical properties of nanosize Sn-coated graphite anodes in lithium-ion cells. Journal of applied electrochemistry, 34(2), 187-190.
    65. Ji, L., Lin, Z., Guo, B., Medford, A. J., & Zhang, X. (2010). Assembly of Carbon–SnO2 Core–Sheath Composite Nanofibers for Superior Lithium Storage. Chemistry-A European Journal, 16(38), 11543-11548.
    66. Chiu, T. M. (2012). Electrochemical Synthesis of Graphene Supported MOx/C Nanocomposite as an Anode Material for Lithium-ion Batteries. NTUST Thesis.
    67. Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., & Tour, J. M. (2010). Improved synthesis of graphene oxide. ACS nano, 4(8), 4806-4814.

    QR CODE