簡易檢索 / 詳目顯示

研究生: 林偉銘
Wei-Ming Lin
論文名稱: 近一大氣壓下量測超低流率的高精度雙槽累積系統
High Precision Dual Tank Accumulation System for Ultralow Flowrate Measurement near Atmospheric Pressure
指導教授: 蘇裕軒
Yu-Hsuan Su
口試委員: 周振嘉
Chen-Chia Chou
陳國聲
Kuo-Shen Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 136
中文關鍵詞: 超低流率微流道滑移流精確量測系統
外文關鍵詞: Ultralow flowrate, microchannel, slip flow, precision measurement sustem
相關次數: 點閱:285下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

當氣體流經具有微米特徵尺寸的微流道時,即使其出口條件為一大氣壓,也將會因為流體分子與固體邊界的動量交換不完全而形成滑移流,為了研究切線動量修正係數與滑移流之間的關係,往往需要藉由量測微流道出口的質量流率來反推算出切線動量修正係數,但是流經微流道所產生的質量流率是相當小的,市售的流量計並無法精確的量測到如此小的流率,因此建構一個精確的量測系統是必須,在本實驗中,建構一個雙槽累積系統來做為量測微小流率的系統,其具有的優點為即使在一大氣壓的條件下也能準確量測到極小的流率所造成的 $130$ 帕斯卡大小的差壓,以及抑制量測系統對環境溫度的靈敏性。

微流道通常是藉由微機電製程所製造的,所以在製程選擇的差異以及晶片受汙染程度的大小,甚至儀器的優劣往往使得微流道內的表面粗糙度大相逕庭,而表面粗糙度卻是影響切線動量係數的重要參數之一,在 Arkilic 的實驗之中,雖然利用製程的選擇上製作出表面粗糙度僅 $0.75$ 奈米的光滑微流道,並研究氣體於其內所產生的滑移流現象,但是若是在不同的表面粗糙度下,必定會產生不同的結果,但是表面粗糙度是在製程的過程當中必然會產生的結果,故我們利用微機電製程在微流道內建構人工表面粗糙度,使得主要的表面粗糙度是經由人為所控制的,隨後再使用經過重新設計以避免漏電流產生的陽極鍵結系統對微流道晶片進行氣密封裝,以利後續量測實驗的進行。

至今,雙槽累積量測系統已建構完成,並已完成初步的測試,希望將來能藉由實驗中所建構的雙槽累積系統在相同的壓力條件作用下,量測具有不同表面粗糙度的流道所產生出來的質量流率,並反推算出其切線動量係數,以幫助我們更進一步的了解切線動量修正係數與表面粗糙度之間的關連性。


Due to the insufficient momentum exchange between the gas molecules and solid boundary, slip flow phenomenon may be observed when gas flows through microchannels with characteristic length scale of a few microns even at atmospheric pressure. Experimentally, the tangential momentum accommodation coefficient characterizing the slip flow has to be inferred from the macroscopic relationship between the mass flow rate and the pressure difference at the two ends of microchannel. This minute mass flow rate, however, can not be measured by commercially available flow meters. Consequently, construction of an accurate flow rate measurement system is essential to the study of slip flow phenomena in the microchannels. In this work, a dual-tank accumulation system capable of measuring mass flow rate at 10-7 mole/s was constructed. Sensitivity of the system to the ambient temperature fluctuation is suppressed and minute mass flowrate can be determined accurately even under atmospheric pressure.

In Arkilic's work, the tangential momentum accommodation coefficient of a smooth channel (surface roughness less than 0.75 nm) has been studied. However, surface conditions of the microchannels produced by microfabrication techniques are hardly smooth and these channels are usually built with some irregular structures for particular functions. Consequently, it will be interesting to investigate the slip flows in microchannels with some artificial roughness/structures. In this work, microchannels with prescribed artificial roughness were also constructed and hermetically sealed by the anodic bonding technology for the purpose of testing the constructed system.

Currently, the dual-tank accumulation system has been successfully constructed and tested. This system will be used to characterize the tangential momentum accommodation coefficients of microchannels with embedded artificial roughness in the near future. Hopefully, this will help us understand the slip flow phenomena in more realistic microchannels clearly.

1 導論1 1.1 研究背景 1.2 文獻回顧 1.3 研究目的 2 理論分析 2.1 Poiseuille flow 與滑移流的差別 2.2 滑移流的質量流率推導 2.3 質量流率與TMAC 的關係 3 微機電製程與陽極鍵結封裝 3.1 微流道設計 3.2 微流道製作 3.3 陽極鍵結封裝 3.3.1 陽極鍵結設備建構與其原理特性 3.3.2 改良後的陽極鍵結設備 3.3.3 陽極鍵結步驟 3.4 接合介面 3.5 小結 4 量測方法介紹與量測系統建構 4.1 定壓與定容量測方法介紹 4.2 雙槽累積系統 4.3 雙槽體積差對實驗的影響 4.4 量測系統架構 4.5 小結 5 實驗步驟規劃及系統效能測試 5.1 實驗流程與步驟 5.2 系統效能測試 5.2.1 高壓測試 5.2.2 微流道質量流率量測測試 6 結論及未來發展 6.1 結論 6.2 未來發展 A 表面輪廓儀量測照片 A.1 第一次製程後表面輪廓儀量測照片 A.1.1 編號D A.1.2 編號C A.1.3 編號B A.2 第二次製程後表面輪廓儀量測照片 A.2.1 編號D A.2.2 編號C A.2.3 編號B 參考文獻

[1] R. Prud’homme, T. Chapman, and J. Bowen, “Laminar compressible flow in
a tube,“ Appl. Sci. Res., vol. 43, 1986, pp. 67−74.
[2] A. Beskok and G. Karniadakis, “Simulation of heat and momentum transfer
in micro-geometries,“ 1993, AIAA Paper 93-3269.
[3] K. Pong, C. Ho, J. Liu, and Y.Tai, “Non-linear pressure distribution in uniform
microchannels,“ in Appl, Macrofabrication to Fluid Mechanics, ASME
winter Annu. Meet., Chicago, IL, Nov. 1994, pp. 51−56.
[4] J. Harley, Y. Huang, H. Bau, and J. N. Zemel, “Gas flow in micro-channels,“
J. Fluid Mech., vol. 284, 1995, pp. 257−274.
[5] Wataru Sugiyama, Tadashi and Kenji Nakamori, “Rarefied gas flow between
two flat plates with two dimensional surface roughness,“Vacuum, 1996, vol.
47, pp. 791−794..
[6] Errol B.Arkilic, Martin A. Schmidt, and Kenneth S. Breuer “Gaseous Slip
Flow in Long Microchannel“, Journal of Microelectromechanical Systems,
1997, 6, pp. 167−178.
[7] E. B.Arkilic, M. A. Schmidt, and K. S. Breuer “Sub-nanomol per second flow
measurement near atmospheric pressure“, 1998.
[8] Errol B.Arkilic, Kenneth S. Breuer, and Martin A. Schmidt, “Mass flow and
tangential momentum accommodation in silicon micromachined channels“,
Journal of Fluid Mechanics, 2001, 437, pp. 29−43.
[9] Yan Ji, Kun Yuan, and J.N. Chung,“Numerical simulation of wall roughness
on gaseous flow and heat transfer in a micochannel,“ Internal Jounal of Heat
and Mass Transfer, 2005, 49, 1329−1339.
[10] Jaan Aarik, Aleks Aidla, Aarne Kasikov, Hugo M¨andar,Raul Rammula,
V¨aino Sammelselg, “Influence of carrier gas pressure and flow rate onatomic
layer deposition of HfO2 and ZrO2 thin films,“, Applied Surface Science, 2006,
vol. 252, pp. 5723−5734.
[11] Magnus Wetterhall, Stefan Nilsson, Karin E. Markides, and Jonas Bergquist,
“A Conductive Polymeric Material Used for Nanospray Needle and Low-Flow
Sheathless Electrospray Ionization Applications“, Analytical Chemistry, 2002,
vol. 74, pp. 239−245.

QR CODE