簡易檢索 / 詳目顯示

研究生: 陳坤鴻
Kun-Hung Chen
論文名稱: 具交錯肋條的矩形管道之流場與熱傳特性
Flow and Heat Transfer in Rectangular Channels with Staggered Transverse Ribs
指導教授: 黃榮芳
Rong-Fung Huang
口試委員: 陳明志
Ming-Jyh Chern
葉啟南
Chi-Nan Yeh
劉昌煥
Chang-Huan Liu
張家和
Chir-Ho Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 189
中文關鍵詞: 矩形管道流場肋條
外文關鍵詞: rectangular channel, rib
相關次數: 點閱:198下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以實驗方法探討具交錯排列肋條的矩形管道之流場與熱傳特性。流場研究的設備為一臥式水洞,其測試段管道的寬高比為4,肋條排列在管道上、下表面。測試段為透明壓克力所製成,以利流場可視化與質點影像速度儀(PIV)量測。採用質點軌跡流場觀察法(PTFV)以及質點影像速度儀,針對不同的肋條高度與節距進行實驗研究,雷諾數範圍在3500~14000之間。質點軌跡流場觀察法以比重1.03的塑膠顆粒作為媒介,配合雷射光頁與高速攝影機得到流場可視化的照片。以質點影像速度儀對流場作定量分析,得到流場穩態與瞬時的資訊。為了消弭流場瞬時速度變化的差異性,採用時間平均方式取得平均速度。量化分析的結果顯示,管道內流場具有剪流層、主要渦漩與角落渦漩的特徵。紊流統計分析顯示,在頻譜圖上無明顯的特徵頻率存在,而各位置的概率密度函數皆呈現高斯分佈。由於剪流層渦漩的成長與配對現象,造成剪流層具有大的速度梯度、高紊流強度、高剪應力之特性。依據流場軌跡的型式與迴流區長度的分佈情形,可將流場分為Thru-flow、Oscillating-flow,以及Cell-flow三種特徵模態。Thru-flow之再接觸點的位置小於0.5p,管道中心區域主流幾乎不受肋條影響,流體經過肋條後的加速效果較不明顯。Oscillating-flow之再接觸點的位置大於0.5p或與管道壁面無再接觸的發生,管道中心區域主流因為肋條的高度增加而呈現上下震盪的軌跡。Cell-flow受到上下交錯肋條的抑制,管道中心區域的主流以接近90o向下偏折,部份流體捲入肋條後方的低壓區,另一部份的流體向下游流動受到上方肋條後方迴流的影響,緊貼著壁面流動。Cell-flow的渦度約為Oscillating-flow與Thru-flow的2.5倍。紊流強度方面,Cell-flow的軸向紊流強度約為Oscillating-flow與Thru-flow的2.2倍與3.5倍,Cell-flow的橫向紊流強度約為Oscillating-flow與Thru-flow的2.4倍與4.2倍。針對流場特性所區分的模態,另外使用一套加熱氣流的設備以進行熱傳性能實驗。雷諾數範圍在400~20000之間,測試段以6061 T6鋁合金製造。利用熱電偶量測測試環境溫度、測試段的入口溫度、測試段上多點溫度及測試段出口的溫度。結果顯示,因為具Cell-flow特徵之流場具有高渦度、高紊流強度與高壁面剪應力,使得其熱傳率遠高於Thru-flow與Oscillating-flow。但Cell-flow造成極大的壓力損失,使得Thru-flow的熱傳性能係數(紐塞數與摩擦係數的比值)高於Oscillating-flow與Cell-flow。若不計較其壓力損失,則建議h/B與p/h操作於Cell-flow區域,可得到較高的熱傳率。


The flow structure, turbulence characteristics, heat transfer performance, and the correlations between the flow and heat transfer properties in the rectangular channels installed with staggered ribs are studied. The flow experiments are performed in a water tunnel by using the particle tracking flow visualization method (PTFV) and the particle image velocimetry (PIV). The test section is a rectangular channel which is made of transparent acrylic so that the flow visualization and the PIV measurements are possible. The time-evolving instantaneous and time-averaged flow and streamline patterns are obtained. The statistical properties of the turbulence, e.g., the probability density function, autocorrelation coefficient, power spectrum density function, time and length scales of the turbulence, turbulence intensity, shear stress, vorticity, and apparent viscosity are extracted from the measured raw data of the PIV experiments. Three characteristic flow patterns: thru-flow, oscillating-flow, and cell-flow, are identified. The vorticity as well as the axial and transverse turbulence intensities of the cell-flow are drastically larger than those of the oscillating-flow and the thru-flow by about 2 to 5 percents. The heat transfer experiments are conducted in a heated wind tunnel with a rectangular test section which the geometry is similar to that used in the flow experiment. The temperature measurements are done by attaching 40 T-type fine-wire thermocouples of 127 µm bead diameter to test section. It is found that the heat transfer coefficient of the cell-flow is the highest among the three characteristic flow patterns because the turbulence intensity and the wall shear stress of the cell-flow is much higher than those of the oscillating-flow and thru-flow. The flow properties and the heat transfer characteristics are apparently closely related.

中文摘要 i 英文摘要 iii 目錄 iv 符號索引 vi 表圖目錄 ix 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 1 1.3 研究目的 6 第二章 實驗方法、設備與儀器 8 2.1 實驗構想 8 2.2 流場特性實驗設備 8 2.2.1臥式水洞 9 2.2.2具肋條的矩形管道模型 12 2.3 熱傳特性實驗設備 12 2.3.1 風洞 12 2.3.2 測試段 13 2.3.2 發熱裝置 13 2.3.4 溫度量測系統 14 2.4 實驗儀器與方法 15 2.4.1 雷射光頁 15 2.4.2 質點特點分析 16 2.4.3 質點軌跡流場觀察法 16 2.4.4 質點影像速度儀 17 2.4.5 時間平均 23 第三章 流場特性 24 3.1 可視化的流場型態 24 3.2 PIV 量測 25 3.2.1 瞬間流場特性 25 3.2.2 紊流尺度之統計分析 28 3.2.3 平均流場特性 30 3.2.4 流場特徵模態與區域 32 3.2.5 迴流長度 33 3.2.6 渦度分佈 34 3.2.7 紊流強度 37 3.2.8 剪應力分佈 39 第四章 熱傳特性 49 4.1 溫度分佈 49 4.2 紐塞數 50 4.3 壓力損失與熱傳性能 51 第五章 結果與建議 56 5.1 結論 56 5.2 建議 57 5.3 參考文獻 59

[1] Perry, A. E., Schofield, W. H., and Joubert, P. N., “Rough Wall Turbulent Boundary Layers,” Journal of Fluid Mechanics, Vol. 37, Pt 2, 1969, pp. 383-413.
[2] Tani, J., “Turbulence Boundary Layer Development over Rough Surface,” Perspectives in Turbulence Studies, Springer.
[3] Acharya, S., Myrum, T. A., and Inamdar, S., “Subharmonic Excitation of the Shear Layer Between Two Ribs Vortex Interaction and Pressure Field,” AIAA Journal, Vol. 29, No. 9, 1991, pp. 1390-1399.
[4] Okamoto, S., Seo, S., Nakaso, K., and Kawai, I., “Turbulent Shear Flow and Heat Transfer Over the Repeated Two-Dimensional Square Ribs on Ground Plane,” Journal of Fluids Engineering, Vol. 115, December 1993, pp. 631-637.
[5] Furuya, Y., Miyata, M., and Fujita, H., “Turbulent Boundary Layer and Flow Resistance on Plates Roughened by Wires,” Journal of Fluids Engineering, Vol. 98, No. 4, 1976, pp. 635-644.
[6] Hanjalic, K. and Launder, B. E., “Fully Developed Asymmetric Flow in a Plane Channel,” Journal of Fluid Mechanics, Vol. 51, Pt 2, 1972, pp. 301-335.
[7] Isomoto, K. and Honami, S., “The Effect of Inlet Turbulence Intensity on the Reattachment Process over a Backward-Facing Step,” Journal of Fluids Engineering, Vol. 111, March 1989, pp. 87-92.
[8] Abbott, D. E. and Kline, S. J., “Experimental Investigation of Subsonic Turbulent Flow Over Single and Double Backward-Facing Step,” Journal of Basic Engineering, Vol. 84D, September 1962, pp. 914-919.
[9] Eaton, J. K. and Johnston, J. P., “A Review of Research on Subsonic Turbulent Flow Reattachment,” AIAA Journal, Vol. 19, No. 9, 1981, pp. 1093-1100.
[10] Driver, D. M. and Seegmiller, H. L., “Time Dependent Behavior of a Reattaching Shear Layer,” AIAA Journal, Vol. 25, No. 7, 1987, pp. 914-919.
[11] Hasan, M. A. Z., “The Flow over a Backward-Facing Step under Controlled Perturbation: Laminar Separation,” Journal of Fluid Mechanics, Vol. 238, Pt. 3, 1992, pp. 59-73.
[12] Heenan, A. F. and Morrison, J. F., “Passive Control of Pressure Fluctuations Generated by Separated Flow,” AIAA Journal, Vol. 36, No. 6, 1998, pp. 1014-1022.
[13] Taslim, M. E. and Korotky, G. J., “Low-Aspect-Ratio Rib Heat Transfer Coefficient Measurements in a Square Channel,” Journal of Turbomachinery, Vol. 120, October 1998, pp. 831-838.
[14] Rau, G., Cakan, M., Moeller, D., and Arts, T., “The Effect of Periodic Ribs on the Local Aerodynamic and Heat Transfer Performance of a Straight Cooling Channel,” Journal of Turbomachinery, Vol. 120, April 1998, pp. 368-375.
[15] Chang, S. W., Liou, T. M., and Juan, W. C., “Influence of Channel Height on Heat Transfer Augmentation in Rectangular Channels with Two Opposite Rib-Roughened Walls,” International Journal of Heat and Mass Transfer, Vol. 48, No. 13, 2005, pp. 2806-2813.
[16] Park, J. S., Han, J. C., Huang, Y., and OU, S., “Heat Transfer Performance Comparisons of Five Different Rectangular Channels with Parallel Angled Ribs,” International Journal of Heat and Mass Transfer, Vol. 35, No. 11, 1992, pp. 2891-2903.
[17] Tanda, G., “Heat Transfer in Rectangular Channels with Transverse and V-shaped Broken Ribs,” International Journal of Heat and Mass Transfer, Vol. 47, No. 2, 2004, pp.229-243.
[18] Chang, S. W., Chiang, E., and Sung, K. C., “Heat Transfer in a Narrow Channel Roughened by 45 deg. Ribs with Twin-Blow Entrances,” ASME Heat Transfer/Fluids Engineer Summer Conference, North Carolina, July 11-14, 2004.
[19] Han, J. C., Glicksman, L. R., and Rohsenow, W. M., “An Investigation of Heat Transfer and Friction for Rib-Roughened Surfaces,” International Journal of Heat Mass Transfer, Vol. 21, No. 8, 1978, pp. 1143-1156.
[20] Hsieh, S. S. and Hong, Y. J., “Separating Flow Over Repeated Surface-Mounted Ribs in a Square Duct, ”AIAA Journal, Vol. 27, No. 6, 1989, pp. 770-776.
[21] Liou, T. M. and Hwang, J. J., “Turbulent Heat Transfer Augmentation and Friction in Periodic Fully Developed Channel Flows, ” Journal of Heat Transfer, Vol. 114, No. 1, 1992, pp. 56-64.
[22]Sato, H., Hishida, K., and Maeda, M., “Characteristics of Turbulent Flow and Heat Transfer in a Rectangular Channel with Repeated Rib Roughness, ” Vol. 5, 1992, pp. 1-16.
[23] Han, J. C. and Park, J. S., “Developing Heat Transfer in Rectangular Channels with Rib Turbulators, ” International Journal of Heat and Fluid flow, Vol. 31, No. 1, 1988, pp. 183-195.
[24] Cui, J., Patel, V. C., and Lin, C. L., “Large-Eddy Simulation of Turbulent Flow in a Channel with Rib Roughness, ” International Journal of Heat and Fluid flow, Vol. 24, No. 3, 2003, pp. 372-388.
[25] Hall, W. B., “Heat Transfer in Channels having Rough and Smooth Suefaces,” Journal Mechanical Engineering science, Vol. 4, No. 3, 1962, pp. 287-291.
[26] OMEGA, Complete Temperature Measurement Handbook and Encyclopedia, 2nd Ed., Omega Engineering Inc., 2000.
[27] Richard, C. F. and John, H. S., Fundamentals of Air Pollution Engineering, New Jersey, 1988, pp. 290-357.
[28] Holman J. P., Heat Transfer, 9nd Ed., McGraw-Hill, New York, 2002, pp. 230-231.
[29] Dittus, P. W. and Boelter, L. M. K., Int. Commun. Heat Mass Transfer, Vol. 12, No. 1, 1985, pp. 3-22.
[30] Gee, D. L. and Webb. R. L., “Forced Convection Heat Transfer in Helically Rib-Roughened Tubes,” International Journal of Heat Mass Transfer, Vol. 23, 1980, pp. 1127-1136.
[31] Kays, W. M., Crawford, M. E., and Weigand, B., Convective Heat and Mass Transfer, 4nd Ed., McGraw-Hill, New York, 2005.

無法下載圖示 全文公開日期 2011/06/22 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE