簡易檢索 / 詳目顯示

研究生: 許時棋
Shih-chi Hsu
論文名稱: 風力發電機併接於配電系統孤島現象之研究
Study on Islanding of Wind Generation Embedded in the Distribution Networks
指導教授: 辜志承
Jhy-Cherng Gu
口試委員: 陳在相
Zai-xiang Chen
李清吟
Ching-Yin Lee
何子儀
Tze-Yee Ho
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 118
中文關鍵詞: 孤島運轉
外文關鍵詞: Island
相關次數: 點閱:446下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

當風力發電機組與配電系統併聯運轉時,配電系統因某種原因突然跳脫,並且使得發電機形成「孤島運轉」而繼續提供電力至仍然連接之負載,這些負載包含跳脫之前自配電系統供電的負載。這個「孤島運轉」將嚴重威脅配電系統維修人員及設備的安全,以及衝擊配電系統的運轉、保護與電壓管理等問題,因此,有必要予以快速偵測並加以排除之。近年來,隨著風力發電機組的快速成長以及絕大多數的機組都是與配電系統併聯運轉的情況下,防止風力發電機單獨運轉的保護措施已成為一個重要的課題。
本研究使用Matlab-Simpower及PSS/E兩種不同套裝軟體,分別用作模擬傳統感應發電機(鼠籠式或繞線式)模型及雙饋感應發電機模型,同時選擇台電公司二次變電所作為模擬架構,在各種不同的負載變化情形下進行模擬,模擬結果顯示兩種發電機發生孤島運轉的機率都是微乎其微。


Whenever a wind turbine generator (WTG) is operating in parallel with a distribution network and the network is suddenly disconnected, the generator becomes an “Island” and is left to supply all of the remaining connected loads, including the share of loads previously supplied by the network. These Islands pose a significant risk to safety of maintenance personnel and equipment, and have negative impacts to the operation, protection and management of the distribution system. Hence this condition should be quickly detected and resolved. In view of the recent rapid increase in the growth of WTG units and since most of these are connected to the network, measures to protect against Islanding operations have become an important issue.
Two sets of softwares, namely Matlab-Simpower and PSS/E, were used in this study to simulate tranditional induction generator (cage or wound) and Doubly-Fed induction generator (DFIG) respectively. In addition, simulation modle is set up based on the scheme of Taipower secondary substation and its simulation was performed under different level of loading conditions. Result indicates that the possibility of formation of islanding for both type generators is rarely.

摘要 Ⅰ Abstract Ⅱ 誌謝 Ⅲ 目錄 Ⅳ 圖表索引 Ⅵ 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究概要及章節簡述 2 第二章 風力發電概述 4 2.1發展風力發電的意義 4 2.2國內外風力發電發展現況 5 2.2.1國外風力發電發展現況 7 2.2.2我國風力發電發展現況 10 2.3全球風力發電發展之趨勢 14 2.3.1風力機單機大型化 14 2.3.2容量因數提高 15 2.3.3成長快速 16 2.3.4發電成本降低 16 2.3.5離岸風場普遍化 17 第三章 風力發電機的特性與種類 19 3.1概述 19 3.2風力發電機的工作原理 19 3.3風力發電機的類型 22 3.3.1依轉輪構造區分 22 3.3.2依發電機運轉特性區分 22 3.3.2.1恆速恆頻風力發電系統 23 3.3.2.2變速恆頻風力發電系統 27 第四章 風力發電系統孤島運轉檢出方法之探討 38 4.1 前言 38 4.2 孤島運轉的定義 39 4.3 孤島運轉對配電網路之衝擊探討 39 4.4 孤島運轉檢出方法之探討 40 4.4.1孤島運轉偵測方法之概要 40 4.4.2偵測不感帶 41 4.4.3通信協定式孤島運轉偵測方法 43 4.4.4 被動式孤島運轉偵測方法 47 第五章 風力發電機孤島運轉現象之模擬 56 5.1 概述 56 5.2 範例系統介紹 56 5.3 風機併網孤島運轉現象模擬分析 60 5.3.1傳統感應發電機併入饋線運轉 61 5.3.2雙饋型感應發電機併入饋線運轉 74 5.3.3感應發電機以專線型態併網運轉 82 5.4 模擬結果與討論 98

[1] WIND FORCE 12 “A Blueprint to Achieve 12% of the World’s Electricity from Wind Power by 2020”, GWEC June 2005.
[2] EWEA “Wind Power Technology, Wind Energy and the Environment, Wind Power Economics, Future Prospects for Wind Power Markets”, Nov. 23, 2004.
[3] 國營會發布新聞「台灣致力推廣再生能源、創造台灣新動力」,93年8月28日。
[4] 江榮城博士「風場規劃、風場衝擊影響評估簡報資料」,台電公司訓練所講義,2005年11月10日。
[5] 余勝雄、張燕全「我國風力發電應用現況及展望」,中國工程師學會會刊pp.17-26, Vol. 78, No.5, 94年10月。
[6] 鄭國強「風電場併網對系統影響分析及穿透功率極限優化算法」,華北電力大學論文 2004年3月。
[7] Robert Zavadil, Nicholas Miller, Abraham Ellis, and Eduard Muljadi, “Making Connection,” IEEE Power & Energy Magazine, pp.26-37, Vol. 3, No. 6, Nov./Dec. 2005.
[8] Anca D. Hansen, Poul Sorensen, Frede Blaabjerg, and Florin Iov, “Initialisation of Grid-Connected Wind Turbine Models in Power System Simulation,” Riso National Lab, DIgSILENT, Feb. 2003.
[9] Anca D. Hansen, Poul Sorensen, Peter Christensen, Morten Mieritz, John Bech, Birgitte Bak-Jensen, Hans Nielsen “Simulation and Verification of Transient Events in large Wind Power Installation, Riso National Lab, DIgSILENT, 2003.
[10] 石門電廠「石門風力發電機簡報資料」,民國93年。
[11] Sauli Jantti, CODGUNet Project Group, “Connection of Distributed Energy Generation Units in the Distribution Network and Grid,” Amerinova Final Report, Sept. 2003.
[12] Anca D. Hansen, Poul Sorensen, Lorand Janosi, John Bech, and Birgitte Bak-Jensen, “Simulation of Interaction between Wind Farm and PowerSystem,” Riso National Lab, DIgSILENT, 2001.
[13] Markus A. Poller, “Doubly-Fed Induction Machine Models for Stability Assessment of Wind Farm,” DIgSILENT, 2003.
[14] L. Holdsworth, X.G. Wu, J.B. Ekanayake, and N. Jenkins “Comparision of Fixed Speed and Doubly-Fed Induction Wind Turbines during Power System Disturbances,” IEE Proc-Gener. Transmission Distribution, pp. 343-352 Vol. 150, No. 3, May 2003.
[15] Markus A. Poller and Sebastian Achilles, “Aggregated Wind Park Models for Analyzing Power System Dynamics,” DIgSILENT, 2004.
[16] Torbjorn Thiringer, Andreas Peterson, and Tomas Petru, “Grid Disturbance Response of Wind Turbines Equipped with Induction Generator and Doubly-Fed Induction Generator,” IEEE, pp.1542-1543, 2003.
[17] M. G. Jovanovi, Yu “An Optimal Direct Torque Control Strategy for Brushless Doubly-Fed Reluctance,” School of Engineering and Technology, Northumbria University, UK, pp.1229-1230.
[18] Sebastian Achilles and Marks Poller, “Direct Drive Sychronous Machines Models for Stability Assessment of Wind Farms,” DIgSILENT, 2003.
[19] P. Cartwright, L. Holdsworth, J.B. Ekanayake and N. Jenkins, “Co-ordinated Voltage Control Strategy for a Doubly-Fed Induction Generator (DFIG)-based Wind Farm,” IEE Proc.-Gener. Trans. Distrib, pp. 495-502, Vol. 151, No.4, July 2004.
[20] Matlab-Simpower Matlab 7.01, “Wind Turbine Doubly-Fed Induction Generator (Phasor Type),” pp.1-38, 2004.
[21] Antonio C. Ferreia, Richard M. Stephan and Marcio R.M. Araujo “Compensating Characterstics of a Brushless Doubly-Fed Machine,” IEEE, pp.375-378, 2003.
[22] Duro Basic, Jian Guo Zhu and Gerard Boardman, “Transient Performance Study of a Brushless Doubly Fed Twin Stator Induction Generator,” IEEE Transaction on Energy Conversion, Vol.18, No.3, pp.400-401, September 2003.
[23] 經濟部工業局「再生能源與電力節能技術」工業技術人才培訓講義,民國92年9月24日。
[24] 郭芳楠、林明民、馮輝正、江榮城「分散型電源倂聯技術要點整合」 民國94年。
[25] 台電工程月刊「風力發電對系統衝擊之探討」pp.120-143, 第657期92年5月。
[26] IEEE Std. 1547, “IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems,” New York, 28 July 2003.
[27] IEEE Group Members, “Application Guide for Distributed Generation Interconnection: 2003 Update, The NRECA Guide to IEEE 1547,” Power Engineering Review, IEEE, pp.16-19, Vol. 22, Feb. 2003.
[28] Rule 21 Modul Rule, “Generating Facility Interconnections,” South California Edison, Sept. 15, 2004.
[29] 日本「分散型電源系統連系技術指針」, 2001。
[30] 日本系統連系技術要件檢討委員會報告書「電力系統連系技術要件」, 2003。
[31] ESB Networks, “Conditions Governing Connection to the Distribution System: Connections at MV and 38kV, Embedded Generators at LV, MV and 38kV,” July 2003.
[32] Walmir Freitas, Zhenyu Huang and Wilsun Xu, “A Practical Method for Assessing the Effectiveness of Vector Surge Relays for Distributed Generation Applications,” IEEE Transaction on Power Delivery, Vol. 20, No. 1, pp.57-63, Jan. 2005.
[33] Wilsun Xu and Sylvain Martel, “An Assessment of Distributed Generation Islanding Detection Methods and Issues for Canada,” CETC Varennes, July 2004.
[34] Task V Report IEA-PVPS, “Evaluation of Islanding Detection Methods for Photovoltaic Utility-interactive Power Systems,” March 2002.
[35] Jorgen Kaas Pedersen, Magnus Akke, Neils Kjolstad Poulsen, and Knud Ole Helgesen Pedersen, “Analysis of Wind Farm Islanding Experiment,” IEEE Transaction on Energy Conversion, Vol. 15, No.1, pp.110-115, March 2000.
[36] Zhihong Ye, Amol Kolwalkar, and Yu Zhang, “Evaluation of Anti-Islanding Schemes Based on Non Detection Zone Concept,” Power Engineering Review, IEEE, pp.1735-1741, 2003.
[37] J. E. Kim and J. S. Hwang, “Islanding Detection Method of Distributed Generation Units Connected to Power Distribution System,” Power Engineering Review, IEEE, pp.16-19, Vol.22, Feb. 2000.
[38] 陳清山、羅天賜“Vector Surge 及ROCOF孤島保護電驛之模擬分析”工研院能資所,中華民國第26屆電力工程研討會 94年12月9日。
[39] Martin Geidl, “Protection of Popwer Systems with Distributed Generation: State of the Art,” July 2005.
[40] ESBNG, “Minimum Size for Wind Farms version 1.7, Assessment of the New Wind Grid Code on the DSO’s Requirements:Assessment of Impact of widened Under/Over-Frequency and ROCOF requirements to Comply with new Wind Grid Code”.
[41] Cooper Power System, “Technical Data of UM30SV Vector Jump/Islanding Relay”.
[42] Walmir Freitas, Wilsun Xu, Carolina M., and Zhenyu Huang, “Comparative Analysis Between ROCOF and Vector Surge Relays for Distributed Generation Applications” IEEE, pp.1315-1324, Vol. 20, No. 2, April 2005.
[43] 陳在相、楊文治、掌易、楊念哲、江龍生、張家豪「台電公司配電饋線電壓品質控制技術之調查研究」,台灣電力公司研究計劃,期末報告、民國94年。
[44] Sung-II Jang and Kwang-Ho Kim, “Development of a Logical Rule-based Islanding Detection Method for Distrbuted Resource,” Power Engineering Review, IEEE Transaction on Power Delivery, pp.800-806, 2002.
[45] Sung-II Jang and Kwang-Ho Kim, “An Islanding Detection Method for Distributed Generations Using Voltage Unbalance and Total Harmonic Distortion of Current,” IEEE Transaction on Power Delivery, pp.1 - 8, Feb. 2004.

QR CODE