簡易檢索 / 詳目顯示

研究生: 莊國韋
Chuang Kuo-Wei
論文名稱: 寬頻混合式電漿波導分光器於馬赫詹德延遲干涉儀之應用
Unbalanced Mach-Zehnder Interferometer using Broadband Hybrid Plasmon Waveguide Power Divider
指導教授: 徐世祥
Shih-Hsiang Hsu
口試委員: 廖顯奎
Shien-Kuei Liaw
黃升龍
Sheng-Lung Huang
張宏鈞
Hung-Chun Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 118
中文關鍵詞: 馬赫詹德方向耦合器寬頻混合式電漿波導馬赫詹德延遲干涉儀絕緣層上覆矽
外文關鍵詞: Delayed Mach-Zehnder
相關次數: 點閱:183下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

絕緣層上覆矽(Silicon-on-insulator, SOI)是近年來廣泛應用在高速且低功耗電子元件,因為其具有高折射率係數且可大幅縮小元件體積,同時製作方式與互補式金屬氧化物半導體(Complementary Metal Oxide Semiconductor, CMOS)製程相容,有利於光電積體電路的發展。
馬赫詹德延遲干涉儀(Delayed Mach-Zehnder Interferometer, DMZI)可運用於色散(Chromatic Dispersion, CD)監測與差分相位移鍵控(Differential Phase Shift Keying; DPSK) 調制/解調變器。非理想型馬赫詹德延遲干涉儀在相位解調變時,會使得光隔離度(Isolation)下降,導致消光比變小及誤碼率表現不佳,同時系統色散監測之靈敏度也會下降。絕緣層上覆矽為主的馬赫詹德延遲干涉儀主要參數為光波導群折射率及干涉儀的分光率。吾人利用低同調干涉系統搭配絕緣層上覆矽之環形共振器,量測出波導群折射率在TM模態下為4.62,且由此SMF-28光纖組成之低同調干涉系統精準度可以量測到0.01誤差率,將來在極化保持光纖改進系統中,0.00002精準度是可以預期的。
在干涉儀分光率方面,為了同時展現建設性輸出端(Constructive Port)與破壞性輸出端(Destructive Port)最大光隔離度,延遲干涉儀前端使用分光率為50/50,而後端則使用因延遲路徑光損耗有關的分光率,同時為了能應用分波多工(Wavelength Division Multiplexing)光通訊系統,吾人提出了兩種與波長不敏感分光器元件馬赫-詹德方向耦合器(Mach-Zehnder Directional Coupler, MZDC)與混合式電漿波導(Hybrid Plasmon Waveguide, HPW)分光器。
馬克-詹德方向耦合器是由一段短的延遲長度,在前端與後端加上方向耦合器所組成。比多模干涉器(Multimode Interference, MMI)有著任意分光率的優點,也可以克服方向耦合器(Directional Coupler, DC)製程容忍度低及波長敏感的缺點。使用商用軟體RSoft中FullWAVE所設計分光比50:50馬赫詹德方向耦合器,可以獲得在C-Band間分光比變動量0.02,但由於製程上誤差在波導寬度由原先設計350 nm偏離為400 nm,波導間距由350 nm偏離至320 nm,如此使分光比由原先50:50,量測到結果為47:53,分光率變動量為0.08,此量測結果與考慮製程誤差的馬赫詹德方向耦合器計算結果一致。傳統方向耦合器會因相同製程誤差,其分光比會由原本50:50與0.16變動量改變為分光比為61:39及0.14變動量,如此可以看出馬赫詹德方向耦合器比起方向耦合器有更良好誤差容忍度與波長不敏感度。
混合式電漿波導分光器是建構於馬赫詹德方向耦合器理論設計並且利用Photo Design套裝商用軟體進行數值模擬分析所設計的寬頻分光器,其不同於馬赫詹德方向耦合器非耦合區(Uncoupled Region),寬頻混合式電漿波導中間是類耦合區(Quasi-uncoupled Region),因此可以獲得更大平坦度,並設計出涵蓋S至L-Band間寬頻分光器,並給出50:50、70:30、90:10三種分光比,所以寬頻混合式電漿波導分光器具有製程不敏感、任意分光比特性,同時更能夠縮小元件尺寸。


Recently silicon-on-Insulator (SOI), used in the high-speed and low-power electronic components, is widely developed for optoelectronic integrated circuits due to its high refractive index, small foot print, and compatible processing with the complementary metal oxide semiconductor (CMOS) technology.
The delayed Mach-Zehnder interferometer (DMZI) can be applied to the chromatic dispersion (CD) monitoring and differential phase shift keying (DPSK) modulator/demodulator. The optical isolation of a non-ideal DMZI is reduced in the phase modulation. Then less extinction ratio and worse bit error rate would be followed besides less sensitive system monitoring. The above is coming from the uneven interferometer splitting ratios and the DMZI frequency offset, which will cause a declined OSNR, which implies the importance of the group index, ng, in the delayed arm. The optical low coherence interferometer (OLCI) was utilized to characterize the group index of 4.62 in the TM polarization using silicon-on-insulator based microring resonator, which deviated from the theoretical value of 4.17 due to the process variation of the waveguide width. The OLCI, constructed by the SMF-28 fibers, could demonstrate 0.01 accuracy on group index and further improvement up to 0.00002 index accuracy could be achieved by the polarization maintained fiber based OLCI.
In the interferometer splitting ratio, the first optical power divider should be 50/50 in order to demonstrate the output maximum optical isolation simultaneously on constructive and destructive output ports. The second optical divider ratio will depend on the additional optical loss on the delalyed arm of the decoupled region. For wavelength division multiplexing (WDM) system applications, two wavelength- insensitive optical power dividers were proposed, Mach-Zehnder directional coupler (MZDC) and hybrid plasmon waveguide (HPW).
MZDC, constructed by two directional couplers connected through a short delayed length in the uncoupled region, demonstrates the arbitrary ratio, insensitivity in wavelength and process variation response compared with the traditional directional coupler (DC). The simulation from the commercial software of RSoft and Photon Design showed that the splitting ratio of 50:50 and 0.02 variation demonstrated on the silicon-wire based MZDC in the C-Band. The manufacture errors caused the waveguide width varied from 0.35 m to 0.4 m and the waveguide spacing from 0.35 m to 0.32 m. The spectral results experimentally showed the splitting ratio of 47:53 with the variation of 0.08, which is the same as the simulation results corrected form the processing variation. Under the same manufacture error, the 50:50 splitting from DC could be theoretically derived as 61:39 and the power divider variation is up to 0.14. It could be concluded that the processing tolerance and wavelength insensitivity in MZDC is better than DC.
The HPW optical power splitter is using the MZDC structure and take advantage of the commercial software of Photo Design to simulate the power divider performance. The difference between two wavelength-insensitive optical power dividers is the uncoupled and quasi-uncoupled regions, individually, for MZDC and HPW. The HPW could demonstrate the insensitivity at the process variation and arbitrary splitting ratios, such as 50:50, 70:30, and 90:10, in the S and L bands besides small footprint.

摘要 I ABSTRACT III 致謝 V 目錄 VI 圖目錄 IX 表目錄 XIII 第一章 緒論 1 1.1簡介 1 1.2 研究動機 1 1.3 論文架構 2 第二章 矽線波導介紹 3 2.1 單多模條件 3 2.2 雙折射效應 5 2.3 波導傳播損耗 6 第三章 耦合器種類 15 3.1方向耦合器 15 3.1.2 超模 19 3.2多模干涉器原理與設計 22 3.3馬赫詹德方向耦合器 25 3.3.1 馬赫詹德方向耦合器設計 28 3.4分光器比較 35 第四章 表面電漿 37 4.1.表面電漿 37 4.1.1表面電漿理論 38 4.1.2電磁波的色散關係式 40 4.2. 混合型電漿波導 45 4.3馬赫詹德方向耦合器與寬頻混合式電漿波導分光器 58 第五章干涉 60 5.1 低同調光學干涉 60 5.1.1 馬赫-詹德干涉儀 60 5.1.2 低同調光干涉理論 62 5.2系統穩定探討 67 第六章實驗與量測 71 6.1馬赫詹德方向耦合器分光率量測 71 6.2 方向耦合器分光率量測 76 6.3 多模干涉儀分光率量測 80 6.4延遲干涉量測 83 6.5波導損耗估計 85 第七章 光功率分光器應用於馬赫詹德延遲儀 87 7.1馬赫差動相位偏移調變(DPSK)接收端 87 7.2馬赫詹德延遲干涉儀理論 87 7.3理想型馬赫詹德延遲干涉儀 88 7.4非理想型馬赫詹德延遲干涉儀 90 第八章 結論與展望 97 8.1 結論 97 參考文獻 98

[1] R. A. Soref, J. Schmidtchen, and K. Petermann, "Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2," IEEE Journal of Quantum Electronics, vol. 27, no. 8, pp. 1971-1974, 1991.
[2] S. P. Chan, C. E. Png, S. T. Lim, G. T. Reed, and V. M. Passaro, "Single-mode and polarization-independent silicon-on-insulator waveguides with small cross section," Journal of Lightwave Technology, vol. 23, no. 6, pp. 2103-2111, 2005.
[3] T. Aalto, Microphotonic silicon waveguide components: VTT Technical Research Centre of Finland, 2004.
[4] K. W. Ang and G. Q. L. Patrick, "Si charge avalanche enhances APD sensitivity beyond 100 GHz," Laser Focus World, vol. 46, no. 8, 2010.
[5] P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. T Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photonics Technology Letters, vol. 16, no. 5, pp. 1328-1330, 2004.
[6] Y. Hibino, "Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs," IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, no. 6, pp. 1090-1101, 2002.
[7] A. Sakai, H. Go, and T. Baba, "Sharply bent optical waveguide silicon-on-insulator substrate," Symposium on Integrated Optics, vol. 4283, pp. 610-618, 2001.
[8] E. Marcatili, "Bends in optical dielectric guides," Bell System Technical Journal, vol. 48, no. 25, pp. 2103-2132, 1969.
[9] M. Heiblum and J. H. Harris, "Analysis of curved optical waveguides by conformal transformation," IEEE Journal of Quantum Electronics, vol. 11, no. 2, pp. 75-83, 1975.
[10] Y. Vlasov and S. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Optics Express, vol. 12, no. 8, pp. 1622-1631, 2004.
[11] V. Subramaniam, G. N. De Brabander, D. H. Naghski, and J. T. Boyd, "Measurement of mode field profiles and bending and transition losses in curved optical channel waveguides," Journal of Lightwave Technology, vol. 15, no. 6, pp. 990-997, 1997.
[12] K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, "Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model," Applied Physics Letters, vol. 77, no. 11, pp. 1617-1619, 2000.
[13] D. Marcuse, "Mode conversion caused by surface imperfections of a dielectric slab waveguide," Bell System Technical Journal, vol. 48, pp. 3187-3215, 1969.
[14] F. Payne and J. Lacey, "A theoretical analysis of scattering loss from planar optical waveguides," Optical and Quantum Electronics, vol. 26, pp. 977-986, 1994.
[15] F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, "Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides," IEEE Photonics Technology Letters, vol. 16, no. 7, pp. 1661-1663, 2004.
[16] Amnon Yariv and Pochi Yeh, Photonics: Optical Electronics in Modern Communications (The Oxford Series in Electrical and Computer Engineering)
, Oxford, 2006.
[17] Jia-Ming Liu, Photonic devices, Cambridge University Press, pp. 206-209, 2005.

[18] Hirohito Yamada, Tao Chu, Satomi Ishida, and Yasuhiko Arakawa, “Optical Directional Coupler Based on Si-Wire Waveguides,” IEEE Photonics Technology Letters, Vol. 17, No. 3, pp. 1041-1135, 2005.

[19] Shih-Hsiang Hsu, “Signal power tapped with low polarization dependence and insensitive wavelength on silicon-on-insulator platforms,” Journal of the Optical Society America B, Vol. 27, No. 5, pp. 941-947, 2010.
[20] Brent E. Little, and Tom Murphy, “Design rules for maximally flat wavelength-insensitive optical power dividers using mach-zehnder structures,” IEEE Photonics Technology Letters, Vol. 9, No. 12, pp. 1607-1609, 1997.
[21] A. Kilian, et al, “Birefrience free planar optical waveguide made by flame hydrolysis deposition (FHD) through tailoring of the overcladding, ” Journal of Lightwave Technology, vol. 18, no. 2, pp. 193-198, 2000.
[22] Lucas B. Soldano and Erik C. M. Pennings, Member, “Optical Multi-Mode Interference Devices Based on Self-Imaging : Principles and Applications,” Journal of Lightwave Technology, Vol. 13,No. 4, pp. 615-627, 1995.
[23] Dan-Xia Xu, Adam Densmore, Philip Waldron, Jean Lapointe, Edith Post, André Delâge, Siegfried Janz, Pavel Cheben, Jens H. Schmid, and Boris Lamontagne, “High bandwidth SOI photonic wire ring resonators using MMI couplers,” Optical Society of America, 2007.
[24] D. J. Thomson, Y. Hu, G. T. Reed, and Jean-Marc Fedeli, “Low Loss MMI Couplers for High Performance MZI Modulators,” IEEE Photonics Technology Letters, Vol. 22, No. 20, pp. 1485 – 1487, 2010
[25] R. W. Hoffman, in physics of nonmetallic Thin Films, edited by C. H. S. Dupuy and A. Cachard, Plenum Press: New York, pp. 273, 1976.
[26] T. A. Carriere, et al, “Measurement of waveguide birefringence using ring resonator, ” IEEE of Photonics Technology Letters, vol.16, no.4, 2004.
[27] 蘇昱豪,光環型共振腔之干涉式生醫感測,國立台灣科技大學,台北,2012.
[28] G. T. Reed and A. P. Knights, ”Silicon Photonics an Introduction, ” John Wiley and Sons, Ltd, 2004.
[29] K. Takada, et al, “Optical low coherence method for characterizing silica-based arrayed-waveguide grating multiplexer, ” Journal of Lightwave Technology, vol. 14, pp. 1677-1689, 1996.
[30] G. Ducournau, O. Latry, M. Ketata,“The All-fiber MZI structure for optical DPSK demodulation and optical PSBT encoding,”Systemics, Cybernetics and Informatics, Vol. 4, No. 4, pp. 78-89, 2006.
[31] Reinhard März,“Integrated Optics, Design and Modelling, ”Artech House Publishers, Boston-London, 1995.
[32] R. F. Oulton1, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation’’, Nature Photonics, 2, pp. 496 – 500, 2008.
[33] Ivan Avrutsky, Richard Soref, and Walter Buchwald, “Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap’’, Optical Express, 18(1), pp. 348-363, 2010.
[34] 廖高崧,金屬-介質-金屬波導結構的表面電漿分光器之研究,碩士論文,國立交通大學光電工程學系碩士班(2013)
[35] 郭建銘,效能增強混合式表面電漿子波導管之設計與分析,碩士論文,國立清華大學工程系統科學系(2013)
[36] 林君豪,以全向量虛軸有限元素波束傳播法分析數種表面電漿波導結構的模態特性,碩士論文,國立臺灣大學電機資訊學院光電工程學(2014)
[37] 洪仕熹,發展高階有限差分法與邊界匹配條件分析介電質與金屬光波導結構,碩士論文,國立高雄應用科技大學電子工程系(2012)
[38] S. H. Hsu, J.-C. Hsu, and S.-C. Chen, “Interferometric fiber strain sensor using fiber Bragg grating based optical ruler,” 2013/June, CLEO, p. JW2A.72, San Jose, California, USA, 2013.
[39] M. Z. Alam, J. Niklas Caspers, J. S. Aitchison, and M. Mojahedi , “Compact low loss and broadband hybrid plasmonic directional coupler”, Optics Express, 21(13), pp. 16029-16034, 2013.
[40] 吳民耀,劉威志,"表面電漿子理論與模擬",物理雙月刊,廿八卷二期, pp. 486-496, 2006.
[41] 邱國斌,蔡定平,"金屬表面電漿簡介",物理雙月刊,廿八卷二期, pp. 472-485, 2006.
[42] Fei Lou, Zhechao Wang, Daoxin Dai, Lars Thylen, and Lech Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett., Vol. 100, pp. 241105, 2012
[43] Peter Debackere, Stijn Scheerlinck, Peter Bienstman, and Roel Baets, “Surface plasmon interferometer in silicon-on-insulator: novel concept for an integrated biosensor,” Optics Express, Vol. 14, No. 16, pp. 7063-7072, 2006.
[44] Qiang Li, Yi Song, Gan Zhou, Yikai Su, and Min Qiu, “Asymmetric plasmonic-dielectric coupler with short coupling length, high extinction ratio, and low insertion loss,” Optics Letters, Vol. 35, No. 19, pp. 3153-3155, 2010.
[45] Alexandra Boltasseva, Thomas Nikolajsen, Kristjan Leosson, Kasper Kjaer, Morten S. Larsen, and Sergey I. Bozhevolnyi, “Integrated Optical Components Utilizing Long—Range Surface Plasmon Polari tons,’’ Journal of Lightwave Technology, Vol. 23, No. 1, pp. 43-45, 2005.
[46] M. K. Chin and S. T. Ho, “Design and modeling of waveguide coupled single-mode microring resonators,’’ Journal of Lightwave Technology, Vol. 16, No. 8, pp. 1433, 1998.
[47] Koji Matsubara,Satoshi Kawata, and Shigeo Minami,“Optical chemical sensor based on surface plasmon measurement,” Applied Optics, Vol. 27, No. 6, pp. 1160-1163 , 1988.
[48] Kretschmann E , and Raether H, ‘'Radiative decay of nonradiative surface plasmons excited by light,” Z. Natureforsch, Vol. 23, pp.2135-2136, 1968.
[49] D. X. Xu, A. Densmore, P. Waldron, J. Lapointe, E. Post, A. DelÔge, S. Janz, P. Cheben, J. H. Schmid and B. Lamontagne, "High bandwidth SOI photonic wire ring resonators using MMI couplers," Optics Express, vol. 15, no. 6, pp. 3149-3155, 2007.
[50] D. X. Xu, P. Cheben, A. Delâge, S. Janz, B. Lamontagne, E. Post, and W. N. Ye, "Polarization-insensitive MMI-coupled ring resonators in silicon-on-insulator using cladding stress engineering," Integrated Optoelectronic Devices, vol. 6477, pp. 64770D-64770D-11, 2007.
[51] Hirohito Yamada, Tao Chu, Satomi Ishida, and Yasuhiko Arakawa, “Optical Directional Coupler Based on Si-Wire Waveguides,” IEEE Photonics Technology Letters, Vol. 17, No. 3, pp. 1041-1135, 2005.
[52] Dan-Xia Xu, Adam Densmore, Philip Waldron, Jean Lapointe, Edith Post, André Delâge, Siegfried Janz, Pavel Cheben, Jens H. Schmid, and Boris Lamontagne, “High bandwidth SOI photonic wire ring resonators using MMI couplers,” Optical Society of America, 2007.
[53] A. L. Campillo, "Chromatic dispersion-monitoring technique based on phase sensitive detection," IEEE Photonics Technology Letters, vol. 17, no. 6, pp. 1241-1243, 2005
[54] Lize, Y.K., Christen, L., Saghari, P. and Nuccio, S., “Implication of Chromatic Dispersion on Frequency Offset and Bit Delay Mismatch Penalty in DPSK Demodulation,” Optical Communications European Conference, EOOC, September, 2006.

QR CODE