簡易檢索 / 詳目顯示

研究生: 簡夆昌
Feng-Chang Chien
論文名稱: 運用矽線波導微環形諧振器研製高靈敏生醫感測器
Highly Sensitive Biosensor through Silicon Wire based Microring Resonator
指導教授: 徐世祥
Shih-Hsiang Hsu
林保宏
Pao-Hung Lin
口試委員: 徐世祥
Shih-Hsiang Hsu
林保宏
Pao-Hung Lin
張哲菖
Che-Chang Chang
劉國辰
Kou-Chen Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 80
中文關鍵詞: 矽線波導微環形諧振器生醫感測器
外文關鍵詞: Silicon Wire, Microring Resonator, Biosensor
相關次數: 點閱:339下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生醫光電是一成長迅速的研究領域,而且已成為生物科技重點發展項目之一。近年來,研究人員提出將微環形諧振器(Microring Resonator;MRR)用於無標記生物感測應用,由環內強電場增強引起的高品質因子(Q)使得MRR成為有效地分析檢測生物分子之微小濃度引起折射率變化檢測的良好候選者。本論文提出利用微環形諧振器之元件特性,結合低同調干涉技術及Delayed Self-Homodyne方法來研製高靈敏生醫感測器。
    在本論文中,我們運用光纖通訊波段之寬頻譜光源及Mach-Zehnder干涉儀作為實驗架構主體,量測系統分為兩個部分,低同調干涉系統及線寬量測系統。低同調干涉系統是以Mach-Zehnder干涉儀及低同調光源作為此系統的主要架構,並結合微環形諧振器的環降(Ringdown)現象,來達到醫學感測的目的。在數據處理上,使用Matlab將環降現象的干涉波包以高斯曲線擬和(Gaussian Curve Fitting)的方式分析不同濃度待測物各階波包之間的位移,靈敏度約為10.21μm⁄μM。
    線寬量測系統為運用Delayed Self-Homodyne方法與高解析度頻譜分析儀(Electrical Spectrum Analyzer, ESA)來替代波長分析儀(Optical Spectrum Analyzer, OSA)。藉由Fiber Bragg Grating濾波特性,結合隨折射率變化產生偏移的微環形諧振器共振波長,來進行感測。Delayed Self-Homodyne方法的架構為Mach-Zehnder干涉儀,利用補償光纖的方式使兩路光程差遠大於輸入光源的同調長度,使Mach-Zehnder干涉儀的兩路光變的互不相干,利用Coupler再將兩路光源合併,兩路光的交集處經由ESA顯示出來,在數據分析上以此交集處線寬的變化與不同濃度待測物的變化加以比較,此感測器的靈敏度約為0.00191nm/(mg/ml)。


    Biophotonics is a rapidly growing field in prevailing researches and becomes one of the major developed projects of biomedical technologies. In recent years, the microring resonator (MRR) has been utilized for label-free biosensing applications. The high quality factor (Q) from the strong electric field enhancement within the ring makes the MRR a good candidate for biomolecule detection under low analyte concentration conditions. Here we propose to develop high sensitivity biosensors using MRR characteristics interrogated with the low coherent interference technique and delayed Self-Homodyne method.
    In this thesis, the main experimental structure consists of the Mach-Zehnder interferometer and broad band source in the optical fiber communication wavelength range. The characterization is divided into two parts - the low coherence interferograms and linewidth measurement. The optical low coherence interferometry (OLCI) is composed of the Mach-Zehnder structure and low coherence light source, and its interferogram Ringdown from the MRR could be utilized for biosensing applications. The interferogram Ringdown could be analyzed to detect the spatial shifting between different orders and various analyte concentrations using Gaussian curve fitting. The sensitivity can demonstrate 10.21μm⁄μM.
    The linewidth measurement uses the electrical spectrum analyzer (ESA) for a higher frequency resolution from the delayed Self-Homodyne compared with the optical spectrum analyzer (OSA). The sensing is performed by the linewidth change with ambient refractive index variation through the cascaded wave from the fiber Bragg grating and MRR. The delayed Self-Homodyne method is to intentionally make two Mach-Zehnder optical path difference larger than the input light coherence for two output incoherent waves and then followed by photodetector and ESA. The linewidth variations at various analyte concentrations demonstrate the sensitivity as 0.00191nm/(mg/ml).

    第1章 緒論 1.1 研究背景 1.2 研究目的 1.3 研究之重要性 1.4 論文架構 第2章 波導元件之原理與設計及系統介紹 2.1 波導理論 2.2 微環形諧振器原理 2.3 多模干涉儀型微環形諧振器 2.4 微環形諧振器之生物感測器 2.5 Ringdown 原理 2.6 國內外微環諧振器之生物感測器 2.7 Mach-Zehnder 干涉儀 2.8 線寬量測架構 第3章 研究與模擬方法 3.1 光纖低同調干涉波包模擬 3.2 微環形諧振器之設計 第4章 實驗步驟 4.1 波導耦合 4.2 固定化步驟 4.3 待測物配法 4.4 OFLCI實驗架構 4.5 OFLCI系統架設 4.6 量測結果討論 4.7 線寬量測架構 4.8 線寬量測實驗步驟 4.9 量測結果 第5章 結論與未來展望 5.1 結論 5.2 未來展望 參考文獻

    [1] 陳俊彥,矽光波導微環形諧振器特性之分析,國立中山大學,高雄,2015.A.
    [2] F. Brueckner, K.-J. Armache, A. Cheung, G. E. Damsma, H. Kettenberger, E. Lehmann, et al., "Structure–function studies of the RNA polymerase II elongation complex," Acta Crystallographica Section D: Biological Crystallography, vol. 65, pp. 112-120, 2009.
    [3] E. Hood, "RNAi: What's all the noise about gene silencing?," Environmental Health Perspectives, vol. 112, pp. 24-29, 2004.
    [4] S.-L. Yu, H.-Y. Chen, G.-C. Chang, C.-Y. Chen, H.-W. Chen, S. Singh, et al., "MicroRNA Signature Predicts Survival and Relapse in Lung Cancer," Cancer Cell, vol. 13, pp. 48-57, 2008.
    [5] John Senior and M. Yousif Jamro, Optical Fiber Communications: Principles and Practice, 3rd ed, Financial Times/Prentice Hall, 2009.
    [6] D. Xu, S. Janz and P. Cheben, "Design of polarization-insensitive ring resonators in silicon-on-insulator using MMI couplers and cladding stress engineering", IEEE Photonics Technology Letters, vol. 18, no. 2, pp. 343-345, 2006.
    [7] A. Yariv, "Universal relations for coupling of optical power between microresonators and dielectric waveguides", Electronics Letters, vol. 36, no. 4, p. 321, 2000.
    [8] e. Xu DX, "High bandwidth SOI photonic wire ring resonators using MMI couplers. - PubMed - NCBI", Ncbi.nlm.nih.gov, 2019.
    [9] X. Fan, I. White, S. Shopova, H. Zhu, J. Suter and Y. Sun, "Sensitive optical biosensors for unlabeled targets: A review", Analytica Chimica Acta, vol. 620, no. 1-2, pp. 8-26, 2008.
    [10] A. Densmore, D. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. Schmid and E. Post, "A Silicon-on-Insulator Photonic Wire Based Evanescent Field Sensor", IEEE Photonics Technology Letters, vol. 18, no. 23, pp. 2520-2522, 2006.
    [11] G. Nemova and R. Kashyap, "Theoretical model of a planar integrated refractive index sensor based on surface plasmon-polariton excitation with a long period grating", Journal of the Optical Society of America B, vol. 24, no. 10, p. 2696, 2007.
    [12] S. Cho and N. Jokerst, "A Polymer Microdisk Photonic Sensor Integrated Onto Silicon", IEEE Photonics Technology Letters, vol. 18, no. 20, pp. 2096-2098, 2006.
    [13] R. Boyd and J. Heebner, "Sensitive disk resonator photonic biosensor", Applied Optics, vol. 40, no. 31, p. 5742, 2001.
    [14] C. Chao and L. Guo, "Biochemical sensors based on polymer microrings with sharp asymmetrical resonance", Applied Physics Letters, vol. 83, no. 8, pp. 1527-1529, 2003.
    [15] A. Armani and K. Vahala, "Heavy water detection using ultra-high-Q microcavities", Optics Letters, vol. 31, no. 12, p. 1896, 2006.
    [16] A. Armani, R. Kulkarni, S. Fraser, R. Flagan and K. Vahala, "Label-Free, Single-Molecule Detection with Optical Microcavities", Science, vol. 317, no. 5839, pp. 783-787, 2007.
    [17] H. Yi, D. Citrin and Z. Zhou, "Highly sensitive silicon microring sensor with sharp asymmetrical resonance", Optics Express, vol. 18, no. 3, p. 2967, 2010.
    [18] D. Dai and S. He, "Highly-sensitive sensor with large measurement range realized with two cascaded-microring resonators", Optics Communications, vol. 279, no. 1, pp. 89-93, 2007.
    [19] B. Su, Chunxia Wang, Qiang Kan and Hongda Chen, "Compact Silicon-on-Insulator Dual-Microring Resonator Optimized for Sensing", Journal of Lightwave Technology, vol. 29, no. 10, pp. 1535-1541, 2011.
    [20] Z. Wang, M. Jiang, H. Xu and R. Du, "New Optical Fiber Micro-Bend Pressure Sensors Based on Fiber-Loop Ringdown", Procedia Engineering, vol. 29, pp. 4234-4238, 2012.
    [21] R. Guider, D. Gandolfi, T. Chalyan, L. Pasquardini, A. Samusenko, C. Pederzolli, G. Pucker and L. Pavesi, "Sensitivity and Limit of Detection of biosensors based on ring resonators", Sensing and Bio-Sensing Research, vol. 6, pp. 99-102, 2015.
    [22] Z. Wang, M. Jiang, H. Xu and R. Du, "New Optical Fiber Micro-Bend Pressure Sensors Based on Fiber-Loop Ringdown", Procedia Engineering, vol. 29, pp. 4234-4238, 2012.
    [23] D. Xu, M. Vachon, A. Densmore, R. Ma, A. Delâge, S. Janz, J. Lapointe, Y. Li, G. Lopinski, D. Zhang, Q. Liu, P. Cheben and J. Schmid, "Label-free biosensor array based on silicon-on-insulator ring resonators addressed using a WDM approach", Optics Letters, vol. 35, no. 16, p. 2771, 2010.
    [24] X. Jiang, J. Ye, J. Zou, M. Li and J. He, "Cascaded silicon-on-insulator double-ring sensors operating in high-sensitivity transverse-magnetic mode", Optics Letters, vol. 38, no. 8, p. 1349, 2013.
    [25] X. Jiang, Y. Chen, F. Yu, L. Tang, M. Li and J. He, "High-sensitivity optical biosensor based on cascaded Mach-Zehnder interferometer and ring resonator using Vernier effect", Optics Letters, vol. 39, no. 22, p. 6363, 2014.
    [26] C. Ciminelli, F. Dell’Olio, D. Conteduca, C. Campanella and M. Armenise, "High performance SOI microring resonator for biochemical sensing", Optics & Laser Technology, vol. 59, pp. 60-67, 2014.
    [27] G. Zhang, X. Feng, B. Liedberg and A. Liu, "Gas Sensor for Volatile Organic Compounds Detection Using Silicon Photonic Ring Resonator", Procedia Engineering, vol. 168, pp. 1771-1774, 2016.
    [28] J. Heebner, R. Boyd and Q. Park, "SCISSOR solitons and other novel propagation effects in microresonator-modified waveguides", Journal of the Optical Society of America B, vol. 19, no. 4, p. 722, 2002.
    [29] H. Ludvigsen, M. Tossavainen and M. Kaivola, "Laser linewidth measurements using self-homodyne detection with short delay", Optics Communications, vol. 155, no. 1-3, pp. 180-186, 1998.
    [30] Z. Wang, Y. Meng, P. Ying, C. Qi and G. Jin, "A label-free protein microfluidic array for parallel immunoassays", Electrophoresis, vol. 27, no. 20, pp. 4078-4085, 2006.
    [31] J. Flueckiger, S. Schmidt, V. Donzella, A. Sherwali, D. Ratner, L. Chrostowski and K. Cheung, "Sub-wavelength grating for enhanced ring resonator biosensor", Optics Express, vol. 24, no. 14, p. 15672, 2016.

    無法下載圖示 全文公開日期 2024/08/19 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE