研究生: |
洪旻孜 Min-Tzu Hung |
---|---|
論文名稱: |
開發聚(3,4-乙烯二氧噻吩)系導電高分子奈米結構界面工程技術之有機電化學電晶體於汗液感測應用 Development of Poly(3,4-ethylenedioxythiophene)-Based Conductive Polymer Nanostructure Interface Engineering Technology for Organic Electrochemical Transistors in Sweat Sensing Applications |
指導教授: |
蕭育生
Yu-Sheng Hsiao |
口試委員: |
闕居振
Chu-Chen Chueh 羅世強 Shyh-Chyang Luo 蕭育生 Yu-Sheng Hsiao |
學位類別: |
碩士 Master |
系所名稱: |
工程學院 - 材料科學與工程系 Department of Materials Science and Engineering |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 中文 |
論文頁數: | 95 |
中文關鍵詞: | 電化學聚合 、羥基官能化聚(3,4-乙烯基二氧噻吩)(PEDOT-OH) 、聚(3,4-乙烯基二氧噻吩):聚(苯乙烯磺酸)(PEDOT:PSS) 、有機電化學電晶體(OECT) 、汗液檢測 |
外文關鍵詞: | Electrochemical polymerization, template-free, sweat sensing, hydroxyl-functionalized poly(3,4-ethylenedioxythiophene) (PEDOT-OH), poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), organic electrochemical transistors (OECTs), sweat detection |
相關次數: | 點閱:9 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中,我們圖案化的聚(3,4-乙烯基二氧噻吩):聚(苯乙烯磺酸)(PEDOT:PSS)薄膜上,深入探討無模板電化學聚合法以製備羥基官能化聚(3,4-乙烯基二氧噻吩)(PEDOT-OH)三維(3D)奈米結構,並開發出五種不同形態的奈米結構以作為有機電化學電晶體(OECT)的主動層通道。同時,我們進一步探索這些OECT的元件特性,並優化發展成生物感測器對人體汗液中壓力荷爾蒙之皮質醇(Cortisol)進行量化感測應用潛力評估。研究結果顯示,通過調整電聚合條件(如電解質配方、聚合時間及溫度),可以成功製備出顆粒狀(Granular, G)、珊瑚狀(Coral-like, C)、管狀(Tubular, T)、珊瑚狀修飾的顆粒(GC)和珊瑚狀修飾的管狀(TC)等奈米結構,並設計成複合式OECT主動層通道。在研究中,我們不僅分析這些PEDOT-OH奈米結構的物理化學特性,還評估其在OECT中的元件特性差異,並進一步優化界面工程技術以實現Cortisol的高效量化感測。為了提升元件對Cortisol的感測靈敏度及專一性,研究導入多項表面工程技術,包括3-環氧丙氧丙基三甲氧基矽烷(GOPS)的氣相沉積、適體(Aptamer)的表面化學接枝、以及牛血清白蛋白(BSA)的非特異性封裝。研究結果證實,經奈米結構化及官能基化修飾的OECT元件,對於Cortisol的線性檢測範圍為1 pM至10 μM,涵蓋了人體汗液中Cortisol的分泌濃度範圍。該研究開發的元件具有極高的檢測穩定性,感測響應時間僅需20秒,並對於結構相似的干擾物展現卓越的選擇性。此外,本開發OECT元件的檢測極限可達到0.012 fM。綜合評估,此優化的3D-OECT元件可展現結合穿戴式醫療檢測的潛力,在未來能為個人化汗液醫療感測應用提供了極具前景的解決方案。
This study thoroughly investigated the template-free electrochemical polymerization methods for hydroxyl-functionalized poly(3,4-ethylenedioxythiophene) (PEDOT-OH) nanostructures. Using the pre-patterned poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) films, we fabricated five distinct nanostructures to serve as the decorated layers on the active-layer channels in organic electrochemical transistors (OECTs) for sweat detection applications. Furthermore, we explored the characteristics of these OECT devices and optimized them for potential application as biosensors for detecting cortisol, a stress hormone present in human sweat. The results demonstrated that by tailoring the polymerization conditions, such as electrolyte composition, polymerization time, and temperature, we successfully synthesized granular (G), coral-like (C), tubular (T), granular-decorated coral-like (GC), and tubular-decorated coral-like (TC) nanostructures. These were then designed ab the hybrid OECT active-layer channels. Additionally, we not only analyzed the physicochemical properties of these PEDOT-OH nanostructures but also evaluated their performance in OECT devices. We then optimized interfacial engineering techniques to enable OECTs for efficient quantitative sensing of cortisol. To enhance the sensitivity and specificity of the OECTs for cortisol detection, multiple surface engineering techniques were employed, including vapor deposition of 3-glycidyloxypropyltrimethoxysilane (GOPS), aptamer-based surface chemical grafting, and nonspecific blocking with bovine serum albumin (BSA). The results confirmed that the OECT devices, modified with nanostructures and functionalized interfaces, achieved a linear detection range of 1 pM to 10 μM, encompassing the physiological cortisol concentrations found in human sweat. The devices demonstrated high detection stability, with a response time of just 20 seconds, and exceptional selectivity against structurally similar interferents. Moreover, the OECT devices achieved an impressive detection limit (LOD) of 0.012 fM. Overall, the developed 3D-OECT devices exhibit significant potential for integration with wearable biomedical sensors, providing a promising solution for personalized sweat-based healthcare monitoring applications.
[1] Javaid, S.F., et al., Epidemiology of anxiety disorders: global burden and sociodemographic associations. Middle East Current Psychiatry, 2023. 30(1): p. 44.
[2] Adamson, M.M., et al., International prevalence and correlates of psychological stress during the global COVID-19 pandemic. International Journal of Environmental Research and Public Health, 2020. 17(24): p. 9248.
[3] Shah, S.M.A., et al., Prevalence, psychological responses and associated correlates of depression, anxiety and stress in a global population, during the coronavirus disease (COVID-19) pandemic. Community mental health journal, 2021. 57(1): p. 101-110.
[4] Meaklim, H., et al., Pre-existing and post-pandemic insomnia symptoms are associated with high levels of stress, anxiety, and depression globally during the COVID-19 pandemic. Journal of Clinical Sleep Medicine, 2021. 17(10): p. 2085-2097.
[5] Iqbal, T., et al., Cortisol detection methods for stress monitoring in connected health. Health Sciences Review, 2023. 6: p. 100079.
[6] Young, E.A., et al., Dissociation between pituitary and adrenal suppression to dexamethasone in depression. Archives of general psychiatry, 1993. 50(5): p. 395-403.
[7] Whitworth, J.A., et al., Cardiovascular consequences of cortisol excess. Vascular health and risk management, 2005. 1(4): p. 291-299.
[8] Björntorp, P. and R. Rosmond, Obesity and cortisol. Nutrition, 2000. 16(10): p. 924-936.
[9] Van Cauter, E., R. Leproult, and D.J. Kupfer, Effects of gender and age on the levels and circadian rhythmicity of plasma cortisol. The Journal of Clinical Endocrinology & Metabolism, 1996. 81(7): p. 2468-2473.
[10] Zhou, J., et al., Demographic Characteristics, Etiology, and Comorbidities of Patients with Cushing’s Syndrome: A 10‐Year Retrospective Study at a Large General Hospital in China. International journal of endocrinology, 2019. 2019(1): p. 7159696.
[11] Nieman, L.K. and M.L.C. Turner, Addison's disease. Clinics in Dermatology, 2006. 24(4): p. 276-280.
[12] Burke, H.M., et al., Depression and cortisol responses to psychological stress: a meta-analysis. Psychoneuroendocrinology, 2005. 30(9): p. 846-856.
[13] Sekar, M., et al., Towards wearable sensor platforms for the electrochemical detection of cortisol. Journal of The Electrochemical Society, 2020. 167(6): p. 067508.
[14] Khodagholy, D., et al., High transconductance organic electrochemical transistors. Nature communications, 2013. 4(1): p. 2133.
[15] Baid, S.K., et al., Radioimmunoassay and tandem mass spectrometry measurement of bedtime salivary cortisol levels: a comparison of assays to establish hypercortisolism. The Journal of Clinical Endocrinology & Metabolism, 2007. 92(8): p. 3102-3107.
[16] Poll, E.-M., et al., Saliva collection method affects predictability of serum cortisol. Clinica chimica acta, 2007. 382(1-2): p. 15-19.
[17] Russell, E., et al., Hair cortisol as a biological marker of chronic stress: current status, future directions and unanswered questions. Psychoneuroendocrinology, 2012. 37(5): p. 589-601.
[18] Gao, W., et al., HPLC-FLU detection of cortisol distribution in human hair. Clinical biochemistry, 2010. 43(7-8): p. 677-682.
[19] Bhalla, N., et al., Introduction to biosensors. Essays Biochemistry. 2016.
[20] Statista, B., Wearable device sales revenue worldwide from 2016 to 2022 (in billion US dollars). Statista Inc.: New York, NY, USA, 2017.
[21] Commission, E., Smart Wearables:Reflection and Orientation Paper 2016.
[22] Peake, J.M., G. Kerr, and J.P. Sullivan, A critical review of consumer wearables, mobile applications, and equipment for providing biofeedback, monitoring stress, and sleep in physically active populations. Frontiers in physiology, 2018. 9: p. 743.
[23] Berggren, M. and A. Richter‐Dahlfors, Organic bioelectronics. Advanced Materials, 2007. 19(20): p. 3201-3213.
[24] Rajbhandari, G., et al., Fabrication of Biomedical Electrodes Using Printing Approaches. Biomedical Materials & Devices, 2024: p. 1-26.
[25] Kergoat, L., et al., Advances in organic transistor-based biosensors: from organic electrochemical transistors to electrolyte-gated organic field-effect transistors. Analytical and bioanalytical chemistry, 2012. 402: p. 1813-1826.
[26] Tuerk, C. and L. Gold, Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. science, 1990. 249(4968): p. 505-510.
[27] Ellington, A.D. and J.W. Szostak, In vitro selection of RNA molecules that bind specific ligands. nature, 1990. 346(6287): p. 818-822.
[28] Sun, H. and Y. Zu, A highlight of recent advances in aptamer technology and its application. Molecules, 2015. 20(7): p. 11959-11980.
[29] Jayasena, S.D., Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clinical chemistry, 1999. 45(9): p. 1628-1650.
[30] Song, S., et al., Aptamer-based biosensors. TrAC Trends in Analytical Chemistry, 2008. 27(2): p. 108-117.
[31] Zhang, S., et al., Predicting detection limits of enzyme-linked immunosorbent assay (ELISA) and bioanalytical techniques in general. Analyst, 2014. 139(2): p. 439-445.
[32] Posthuma-Trumpie, G.A., J. Korf, and A. van Amerongen, Lateral flow (immuno) assay: its strengths, weaknesses, opportunities and threats. A literature survey. Analytical and bioanalytical chemistry, 2009. 393: p. 569-582.
[33] Andryukov, B., et al., Biosensor technologies in medicine: from detection of biochemical markers to research into molecular targets. Современные технологии в медицине, 2020. 12(6 (eng)): p. 70-83.
[34] Ito, T., et al., Highly sensitive and rapid sequential cortisol detection using twin sensor QCM. Analytical Methods, 2014. 6(18): p. 7469-7474.
[35] Hampitak, P., et al., A point-of-care immunosensor based on a quartz crystal microbalance with graphene biointerface for antibody assay. ACS sensors, 2020. 5(11): p. 3520-3532.
[36] Jo, S., et al., Localized surface plasmon resonance aptasensor for the highly sensitive direct detection of cortisol in human saliva. Sensors and Actuators B: Chemical, 2020. 304: p. 127424.
[37] Staudinger, H., Macromolecular chemistry. Nobel Lecture, 1953: p. 397-419.
[38] Inzelt, G., Rise and rise of conducting polymers. Journal of Solid State Electrochemistry, 2011. 15: p. 1711-1718.
[39] Snook, G.A., P. Kao, and A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes. Journal of power sources, 2011. 196(1): p. 1-12.
[40] Kar, P., Doping in conjugated polymers. 2013: John Wiley & Sons.
[41] Shi, H., et al., Effective approaches to improve the electrical conductivity of PEDOT: PSS: a review. Advanced Electronic Materials, 2015. 1(4): p. 1500017.
[42] Dimov, I.B., et al., Semiconducting polymers for neural applications. Chemical reviews, 2022. 122(4): p. 4356-4396.
[43] Wu, B., et al., Facile synthesis of a 3, 4-ethylene-dioxythiophene (EDOT) derivative for ease of bio-functionalization of the conducting polymer PEDOT. Frontiers in chemistry, 2019. 7: p. 447361.
[44] Berggren, M. and G.G. Malliaras, How conducting polymer electrodes operate. Science, 2019. 364(6437): p. 233-234.
[45] Lin, Y.-F., C.-T. Li, and K.-C. Ho, A template-free synthesis of the hierarchical hydroxymethyl PEDOT tube-coral array and its application in dye-sensitized solar cells. Journal of Materials Chemistry A, 2016. 4(2): p. 384-394.
[46] Cho, S.I. and S.B. Lee, Fast electrochemistry of conductive polymer nanotubes: synthesis, mechanism, and application. Accounts of chemical research, 2008. 41(6): p. 699-707.
[47] Luo, S.-C., et al., Polydioxythiophene nanodots, nonowires, nano-networks, and tubular structures: the effect of functional groups and temperature in template-free electropolymerization. Acs Nano, 2012. 6(4): p. 3018-3026.
[48] Marks, A., et al., Organic electrochemical transistors: an emerging technology for biosensing. Advanced Materials Interfaces, 2022. 9(6): p. 2102039.
[49] Khodagholy, D., et al., High transconductance organic electrochemical transistors. Nature communications, 2013. 4(1): p. 1-6.
[50] Heinze, J., B.A. Frontana-Uribe, and S. Ludwigs, Electrochemistry of Conducting Polymers Persistent Models and New Concepts. Chemical Reviews, 2010. 110(8): p. 4724-4771.
[51] Zhang, W., et al., Self-assembly of pendant functional groups grafted PEDOT as paracetamol detection material. Physical Chemistry Chemical Physics, 2020. 22(6): p. 3592-3603.
[52] Mugo, S.M., et al., Flexible electrochemical aptasensor for cortisol detection in human sweat. Analytical Methods, 2021. 13(36): p. 4169-4173.
[53] Gupta, P., et al., An electrochemical aptasensor based on gold nanoparticles and graphene oxide doped poly (3, 4-ethylenedioxythiophene) nanocomposite for detection of MUC1. Journal of Electroanalytical Chemistry, 2018. 813: p. 102-108.
[54] An, J.E., et al., Wearable cortisol aptasensor for simple and rapid real-time monitoring. ACS sensors, 2022. 7(1): p. 99-108.
[55] Weng, X., et al., A portable 3D microfluidic origami biosensor for cortisol detection in human sweat. Analytical Chemistry, 2022. 94(8): p. 3526-3534.
[56] Falk, M., et al., Non-invasive electrochemical biosensors operating in human physiological fluids. Sensors, 2020. 20(21): p. 6352.
[57] Oh, H.-K., et al., Advanced trap lateral flow immunoassay sensor for the detection of cortisol in human bodily fluids. Scientific Reports, 2021. 11(1): p. 22580.
[58] Frasconi, M., et al., Surface plasmon resonance immunosensor for cortisol and cortisone determination. Analytical and bioanalytical chemistry, 2009. 394: p. 2151-2159.