簡易檢索 / 詳目顯示

研究生: Diwanda Ageng Rizqi
Diwanda Ageng Rizqi
論文名稱: A Skill Transfer Support Model Based on Deep Learning in Human-machine Interaction
A Skill Transfer Support Model Based on Deep Learning in Human-machine Interaction
指導教授: 王孔政
Kung-Jeng Wang
口試委員: 郭人介
Ren-Jieh Kuo
蔣明晃
Ming-Huang Chiang
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 57
中文關鍵詞: deep learningconvolutional neural networkfaster region-based convolutional neural networkhuman-machine interactionskill transfer
外文關鍵詞: deep learning, convolutional neural network, faster region-based convolutional neural network, human-machine interaction, skill transfer
相關次數: 點閱:331下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

工業4.0的轉變模式並非僅在工廠中使用新技術,改進工作流程與引入新的培訓方法也是必須之改變項目,以利未來持續協助人類技術之發展和轉移。在此研究中提出一用於在製造業組裝任務中的技術轉移之協助模型。本研究提出之模型應用兩種深度學習之方法,其中包含卷積神經網路用於動作判讀與快速區域卷積神經網路。在此研究中將應用一個使用兩種不同攝影角度來記錄玩具組裝過程的個案以驗證提出之模型的成效。CNN和faster R-CNN分別的正確率為94.5%和99%。本方法提出之模型將指引尚不熟悉過程之操作者執行事前已制定好步驟的彈性組裝任務。在學術貢獻這部分,本研究結合兩種深度學習模型以達到同時記錄行為和偵測標的物。本研究之貢獻為在製造業的領域下提供一更為先進之訓練方法用於操作員接受新技術。


The shift paradigm toward Industry 4.0 is not solely completed by enabling smart machines in a factory, but enabling human capability. Refinement of work processes and introduction of new training approaches are needed to support efficient human skill development and transfer. This study proposes a new skill transfer support model in a manufacturing scenario. The proposed model uses two types of deep learning as the backbone: a convolutional neural network for action recognition and a faster region-based convolutional neural network for object detection. In this study, to evaluate the performance of the prosed model, a case study using toy assembly was conducted and they are recorded using two cameras with different angle. The accuracy for CNN and faster R-CNN is 94.5% and 99% respectively. A junior operator is guided by the proposed model as doing flexible assembly tasks based on the skill representation that has been constructed. In terms of theoretical contribution, this study integrated two deep learning models which can simultaneously recognize the action and detect the object. The contribution of the present study is to facilitate advanced training in manufacturing in terms of adapting new skills for their operators.

摘要 i Abstract ii Acknowledgement iii Content of Table vi Content of Figure vii Chapter 1 Introduction 1 1.1 Research background 1 1.2 Research motivation and objective 2 1.3 Thesis structure 3 Chapter 2 Literature Review 4 2.1 Operator 4.0 and human-machine collaboration 4 2.2 Action recognition 5 2.3 Object detection 8 2.4 Convolutional Neural Network (CNN) 10 2.5 Inception v2 12 2.6 Faster regional-convolutional neural network 13 2.7 Summary 15 Chapter 3 Method 16 3.1 Research Framework 16 3.2 CNN architecture for action recognition 17 3.3 Faster R-CNN architecture for object detection 19 Chapter 4 Experiments and Discussion 26 4.1 Experimental setting 26 4.2 Skill representation 27 4.3 Model evaluation 28 4.4 Skill transfer support 31 Chapter 5 Conclusion and Future Research 34 5.1 Discussion and Conclusion 34 5.2 Future Research 35 References 36 Appendix 1. Skill representation description 42 Appendix 2. Object classes 45 Appendix 3. Action classes 1st angle of camera 46 Appendix 4. Action classes 2nd angle of camera 48

Adamides, G., Katsanos, C., Constantinou, I., Christou, G., Xenos, M., Hadzilacos, T., & Edan, Y. (2017). Design and development of a semi‐autonomous agricultural vineyard sprayer: Human–robot interaction aspects. Journal of Field Robotics, 34(8), 1407-1426.
Bac, C. W., van Henten, E. J., Hemming, J., & Edan, Y. (2014). Harvesting robots for high‐value crops: State‐of‐the‐art review and challenges ahead. Journal of Field Robotics, 31(6), 888-911.
Baccouche, M., Mamalet, F., Wolf, C., Garcia, C., & Baskurt, A. (2012). Spatio-Temporal Convolutional Sparse Auto-Encoder for Sequence Classification. In BMVC (pp. 1-12).
Bejnordi, B. E., Zuidhof, G., Balkenhol, M., Hermsen, M., Bult, P., van Ginneken, B., ... & van der Laak, J. (2017). Context-aware stacked convolutional neural networks for classification of breast carcinomas in whole-slide histopathology images. Journal of Medical Imaging, 4(4), 044504.
Bhandare, A., Bhide, M., Gokhale, P., & Chandavarkar, R. (2016). Applications of convolutional neural networks. International Journal of Computer Science and Information Technologies, 7(5), 2206-2215.
Carrio, A., Sampedro, C., Rodriguez-Ramos, A., & Campoy, P. (2017). A review of deep learning methods and applications for unmanned aerial vehicles. Journal of Sensors, 2017.
Chen, B., Ting, J., Marlin, B., & Freitas, N. (2010). Deep learning of invariant spatio-temporal features from video. In Proceedings of the Annual Conference of on Neural Information Processing Systems (NIPS).
Ciocca, G., Napoletano, P., & Schettini, R. (2018). CNN-based features for retrieval and classification of food images. Computer Vision and Image Understanding, 176, 70-77.
Dalal, N., & Triggs, B. (2005, June). Histograms of oriented gradients for human detection. In international Conference on computer vision & Pattern Recognition (CVPR'05) (Vol. 1, pp. 886-893). IEEE Computer Society.
Dewa, C. K. & Afiahayati (2018). Suitable CNN Weight Initialization and Activation Function for Javanese Vowels Classification. Procedia Computer Science, 144, 124-132.
Duan, F., Tan, J. T. C., Tong, J. G., Kato, R., & Arai, T. (2012). Application of the assembly skill transfer system in an actual cellular manufacturing system. IEEE Transactions on Automation Science and Engineering, 9(1), 31-41.
Frank, A. G., Dalenogare, L. S., & Ayala, N. F. (2019). Industry 4.0 technologies: Implementation patterns in manufacturing companies. International Journal of Production Economics, 210, 15-26.
Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., ... & Chen, T. (2018). Recent advances in convolutional neural networks. Pattern Recognition, 77, 354-377.
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).
Hill, T. (2017). Manufacturing strategy: the strategic management of the manufacturing function. Macmillan International Higher Education.
Idrees, H., Zamir, A. R., Jiang, Y. G., Gorban, A., Laptev, I., Sukthankar, R., & Shah, M. (2017). The THUMOS challenge on action recognition for videos “in the wild”. Computer Vision and Image Understanding, 155, 1-23.
Iwahori, Y., Takada, Y., Shiina, T., Adachi, Y., Bhuyan, M. K., & Kijsirikul, B. (2018). Defect Classification of Electronic Board Using Dense SIFT and CNN. Procedia Computer Science, 126, 1673-1682.
Jaderberg, M., Simonyan, K., & Zisserman, A. (2015). Spatial transformer networks. In Advances in neural information processing systems (pp. 2017-2025).
Kiassat, C., & Safaei, N. (2018). Effect of imprecise skill level on workforce rotation in a dynamic market. Computers & Industrial Engineering.
Koch, P. J., van Amstel, M. K., Dębska, P., Thormann, M. A., Tetzlaff, A. J., Bøgh, S., & Chrysostomou, D. (2017). A skill-based robot co-worker for industrial maintenance tasks. Procedia Manufacturing, 11, 83-90.
Landi, C. T., Villani, V., Ferraguti, F., Sabattini, L., Secchi, C., & Fantuzzi, C. (2018). Relieving operators’ workload: Towards affective robotics in industrial scenarios. Mechatronics, 54, 144-154.
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436.
Levratti, A., De Vuono, A., Fantuzzi, C., & Secchi, C. (2016, July). TIREBOT: A novel tire workshop assistant robot. In 2016 IEEE international conference on advanced intelligent mechatronics (AIM) (pp. 733-738). IEEE.
Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., ... & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60-88.
Liu, H., & Wang, L. (2017). Human motion prediction for human-robot collaboration. Journal of Manufacturing Systems, 44, 287-294.
Liu, H., & Wang, L. (2018). Gesture recognition for human-robot collaboration: A review. International Journal of Industrial Ergonomics, 68, 355-367.
Pei, L., Ye, M., Zhao, X., Dou, Y., & Bao, J. (2016). Action recognition by learning temporal slowness invariant features. The Visual Computer, 32(11), 1395-1404.
Peng, X., Wang, L., Wang, X., & Qiao, Y. (2016). Bag of visual words and fusion methods for action recognition: Comprehensive study and good practice. Computer Vision and Image Understanding, 150, 109-125.
Pennathur, A., & Mital, A. (2003). Worker mobility and training in advanced manufacturing. International Journal of Industrial Ergonomics, 32(6), 363-388.
Peruzzini, M., Grandi, F., & Pellicciari, M. (2018). Exploring the potential of Operator 4.0 interface and monitoring. Computers & Industrial Engineering. Qi, T., Xu, Y., Quan, Y., Wang, Y., & Ling, H. (2017). Image-based action recognition using hint-enhanced deep neural networks. Neurocomputing, 267, 475-488.
Qi, T., Xu, Y., Quan, Y., Wang, Y., & Ling, H. (2017). Image-based action recognition using hint-enhanced deep neural networks. Neurocomputing, 267, 475-488.
Rawat, W., & Wang, Z. (2017). Deep convolutional neural networks for image classification: A comprehensive review. Neural computation, 29(9), 2352-2449.
Ren, S., He, K., Girshick, R., & Sun, J. (2016). Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances in neural information processing systems (pp. 91-99).
Romero, D., Bernus, P., Noran, O., Stahre, J., & Fast-Berglund, Å. (2016, September). The operator 4.0: human cyber-physical systems & adaptive automation towards human-automation symbiosis work systems. In IFIP international conference on advances in production management systems (pp. 677-686). Springer, Cham.
Ruppert, T., Jaskó, S., Holczinger, T., & Abonyi, J. (2018). Enabling technologies for operator 4.0: A survey. Applied Sciences, 8(9), 1650.
Shahroudy, A., Ng, T. T., Gong, Y., & Wang, G. (2018). Deep multimodal feature analysis for action recognition in rgb+ d videos. IEEE transactions on Pattern Analysis and Machine Intelligence, 40(5), 1045-1058.
Sun, Y., Wang, X., & Tang, X. (2014). Deep learning face representation from predicting 10,000 classes. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1891-1898).
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1-9).
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2818-2826).
Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. A. (2017, February). Inception-v4, inception-resnet and the impact of residual connections on learning. In Thirty-First AAAI Conference on Artificial Intelligence.
Taylor, G. W., & Hinton, G. E. (2009). Factored conditional restricted Boltzmann machines for modeling motion style. In Proceedings of the 26th annual international conference on machine learning (pp. 1025-1032). ACM.
Traore, B. B., Kamsu-Foguem, B., & Tangara, F. (2018). Deep convolution neural network for image recognition. Ecological Informatics, 48, 257-268.
Vasconez, J. P., Kantor, G. A., & Cheein, F. A. A. (2019). Human–robot interaction in agriculture: A survey and current challenges. Biosystems Engineering, 179, 35-48.
van Dael, M., Verboven, P., Dhaene, J., Van Hoorebeke, L., Sijbers, J., & Nicolai, B. (2017). Multisensor X-ray inspection of internal defects in horticultural products. Postharvest Biology and Technology, 128, 33-43.
Veeriah, V., Zhuang, N., & Qi, G. J. (2015). Differential recurrent neural networks for action recognition. In Proceedings of the IEEE international conference on computer vision (pp. 4041-4049).
Villani, V., Pini, F., Leali, F., & Secchi, C. (2018). Survey on human–robot collaboration in industrial settings: Safety, intuitive interfaces and applications. Mechatronics, 55, 248-266.
Wang, P., Liu, H., Wang, L., & Gao, R. X. (2018). Deep learning-based human motion recognition for predictive context-aware human-robot collaboration. CIRP Annals, 67(1), 17-20.
Wilson, H. J., & Daugherty, P. R. (2018). Collaborative intelligence: Humans and AI are joining forces. Harvard Business Review.
Yao, G., Lei, T., & Zhong, J. (2019). A review of convolutional-neural-network-based action recognition. Pattern Recognition Letters, 118, 14-22.
Zeiler, M. D., & Fergus, R. (2014, September). Visualizing and understanding convolutional networks. In European conference on computer vision (pp. 818-833). springer, Cham.
Zhang, J., Shao, K., & Luo, X. (2018). Small sample image recognition using improved Convolutional Neural Network. Journal of Visual Communication and Image Representation, 55, 640-647.
Zhao, Z. Q., Zheng, P., Xu, S. T., & Wu, X. (2019). Object detection with deep learning: A review. IEEE Transactions on Neural Networks and Learning Systems.

無法下載圖示 全文公開日期 2024/06/26 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE