簡易檢索 / 詳目顯示

研究生: 紀巽元
Hsun-Yuan Chi
論文名稱: 應用於波束成型與LiDAR之低耦合光學相位陣列
Low-coupling Optical Phased Arrays for Optical Beam Forming and LiDAR
指導教授: 徐世祥
Shih-Hsiang Hsu
口試委員: 何文章
Wen-Jeng Ho
王煥宗
Huan-Chun Wang
莊敏宏
Miin-Horng Juang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 81
中文關鍵詞: 光學雷達低耦合天線相位控制陣列光柵天線陣列光束成型
外文關鍵詞: LiDAR, Low-coupling antennas, Optical phased array, Grating antennas, Beam-forming
相關次數: 點閱:239下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來對於光學感測器與光學掃描器的發展具有高度的重視,其中光學探測與測距技術 (Light Detection and Ranging, LiDAR)更是其中重點研究之一,而其中快速掃描與積體化的LiDAR是未來的研究重點。“LiDAR on Chip”是目前積體化LiDAR的一個重要概念,而光學相位陣列(Optical Phase Array, OPA)便是其中一項能夠實現這個概念的技術,為了能夠具有較大的光束轉向角,則必須得將陣列天線的間距減小。由於波導間距過於緊密容易導致串擾現象(Crosstalk)。因此本論文將會深入的討論矽帶波導與光學天線之間如何降低耦合及相位串擾對於波束成形遠場之影響。
為了改善光學相位陣列間的耦合現象及串擾狀況且有效提升OPA之FOV,本論文藉由開發一個矽基微結構,矽帶光柵波導(Silicon-Ribbon grating waveguide),加入至32通道之光學相位陣列,促使魚骨頭光柵波導天線間的串擾降低。藉由商業軟體Rsoft使用時域有限差分(Finite-Difference-Time-Domain, FDTD)模擬針對此結構進行深入探討,其中透過矽帶波導的加入使得光柵天線間之間距可以更為緊密達0.6μm來有效地提升OPA在Φ方向的可視場角,本研究之設計相較於傳統天線間距為1.2μm之OPA由原本之可視場角66度明顯地提升至95度,且Side lobe明顯降低約10dB,將雜光有效抑制並集束於main lobe上提升6dB,並透過將天線波導設計成對稱型雙向輸入且能量呈現線性衰減的形式來有效地提升其光柵有效長度藉此讓光斑在天線僅400μm之FWHM達到約0.24度,並透過雙向輸入形成兩光斑藉此在θ方向能夠進行雙點掃描有效地提升θ_z方向可視場角至30度。
本研究利用具矽帶陣列之8通道OPA晶片證明此結構在±30度的掃描內,光柵瓣仍然在40度以外的位置,產生大於70度的水平可視場角,且垂直掃描調製角度達約每奈米0.14度與理論模擬的單位波長的角度調制相符,且再透過基因演算法調製電壓的情況下,修正製成誤差所帶來的相位差,使得水平FWHM與理論相符合達到約11.9度,SMSR達到約10dB以上。


In recent years, the development of optical sensors and optical scanners has been highly emphasized in the light detection and ranging (LiDAR) research areas. The LiDAR with fast scanning rate and high integration is one of the essential technologies the researchers are focusing on. And the phased optical array (OPA) is an integrated approach to realize the concept of integrated LiDAR through "LiDAR on Chip." The pitch of the array antenna must be reduced to have a larger beam steering angle. The tight spacing of the waveguides can easily lead to coupling crosstalk. Therefore, this thesis will discuss reducing the coupling and crosstalk between the silicon wire-based optical phased array in beamforming.
To improve the coupling and crosstalk between optical phase arrays and effectively enhance the field of view (FOV) of OPA, we develop a silicon-ribbon-based grating waveguide to reduce the crosstalk between 32-channel fishbone grating waveguides. The finite-difference-time-domain (FDTD) simulation was utilized to investigate this structure in-depth. The pitch between the grating antennas could be tightened up to 0.6-μm by adding the silicon-ribbon waveguide to improve the OPA FOV in the horizontal Φ-direction effectively. Compared with the conventional antenna with 1.2-μm-spacing, the OPA in this study has significantly increased the FOV from 66 degrees to 95 degrees. The side lobe has been dramatically reduced by 10-dB. 6-dB has effectively suppressed the noise on the main lobe. The full width at half maximum (FWHM) of the antenna is about 0.24 degrees. The dual spot scanning in the vertical theta direction is achieved through the bi-directional input, effectively increasing the FOV up to 30 degrees.
An 8-channel OPA chip with a silicon ribbon array experimentally demonstrates that a horizontal FOV is more than 70 degrees, and the ±30-degree scanning is shown at a 40-degree vertical angle. The vertical modulation angle is about 0.14 degrees per nanometer, which is consistent with the theoretical calculation. The horizontal FWHM is 11.9 degrees, and its side mode suppression ratio is more than 10 dB.

摘要 p.I ABSTRACT p.II 誌謝 p.IV 目錄 p.V 圖目錄 p.VIII 表目錄 p.XI 第一章 導論 p.1 1.1前言 p.1 1.2研究背景 p.2 1.3研究動機 p.4 1.4論文架構 p.5 第二章 矽波導基本原理與SOLID STATE LIDAR理論 p.6 2.1 司乃耳定律 p.6 2.2 波導結構 p.7 2.3 波導單、多模條件 p.9 2.4 耦合理論(COUPLING MODE THEORY) p.12 2.5 繞射理論 p.16 2.5.1 克希荷夫繞射積分定律 p.16 2.5.2 索莫菲公式(Rayleigh-Sommerfeld’ s formula) p.18 第三章 光學相位陣列元件及理論介紹 p.20 3.1多模干涉耦合器 p.20 3.2熱相位偏移器 p.22 3.3光柵耦合器操作及理論 p.24 3.3.1概述 p.24 3.3.2布拉格條件 (Bragg Condition) p.25 3.3.3光柵耦合理論 p.26 3.4光學相位陣列理論 p.30 3.4.1相位陣列理論 p.30 3.4.2自由空間中的成像繞射理論 p.34 3.4.3天線間距 p.35 第四章相位陣列元件設計與實驗架構 p.37 4.1 多模干涉耦合器設計與模擬 p.37 4.2 量測熱相移器之元件設計 p.39 4.3二維低耦合雙光束天線陣列 p.41 4.3.1波導光柵 p.43 4.3.2雙光束矽帶光柵天線陣列 p.45 4.3.3矽帶光柵天線晶片設計 p.49 第五章 實驗結果與討論 p.51 5.1波導耦合平台 p.51 5.1.1邊緣耦合 p.51 5.1.2光柵耦合 p.53 5.2 LIDAR量測系統架設 p.54 5.2.1 LiDAR光束遠場量測步驟 p.54 5.2.2 LiDAR量測平台 p.55 5.3量測結果與分析 p.56 5.3.1分光器量測 p.56 5.3.2 MZI結構Vπ量測 p.56 5.3.3二維低耦合LiDAR波束成形與相位調控 p.58 5.3.4二維低耦合LiDAR波束成形與波長調控 p.62 第六章 結論與未來展望 p.63 6.1結論 p.63 6.2未來展望 p.63 參考文獻 p.65

[1] M. E. Hodgson, J. R. Jensen, J. A. Tullis, K. D. Riordan, and C. M. Archer, “Synergistic use of lidar and color aerial photography for mapping urban parcel imperviousness,” Photogrammetric Engineering & Remote Sensing, vol. 69, no. 9, pp. 973-980, 2003.
[2] W. Song, R. Gatdula, S. Abbaslou, M. Lu, A. Stein, W. Y.-C. Lai, J. Provine, R. F. W. Pease, D. N. Christodoulides, and W. Jiang, "High-Density Low-Crosstalk Waveguide Superlattice." Frontiers in Optics. Optical Society of America, 2015.
[3] J. Chen, S. Tian, H. Xu, R. Yue, Y. Sun, and Y. Cui, “Architecture of vehicle trajectories extraction with roadside LiDAR serving connected vehicles,” IEEE Access, vol. 7, pp. 100406-100415, 2019.
[4] M. Himmelsbach, A. Mueller, T. Lüttel, and H.-J. Wünsche, "LIDAR-based 3D object perception."
[5] K. Van Acoleyen, W. Bogaerts, J. Jágerská, N. Le Thomas, R. Houdré, and R. J. O. l. Baets, “Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator,” vol. 34, no. 9, pp. 1477-1479, 2009.
[6] C. V. Poulton, P. Russo, E. Timurdogan, M. Whitson, M. J. Byrd, E. Hosseini, B. Moss, Z. Su, D. Vermeulen, and M. R. Watts, "High-performance integrated optical phased arrays for chip-scale beam steering and lidar." CLEO: Applications and Technology. Optical Society of America, 2018.
[7] S. A. Miller, C. T. Phare, Y.-C. Chang, X. Ji, O. A. J. Gordillo, A. Mohanty, S. P. Roberts, M. C. Shin, B. Stern, and M. Zadka, "512-element actively steered silicon phased array for low-power LIDAR." CLEO: QELS_Fundamental Science. Optical Society of America, 2018.
[8] T. Komljenovic, R. Helkey, L. Coldren, and J. E. J. O. e. Bowers, “Sparse aperiodic arrays for optical beam forming and LIDAR,” vol. 25, no. 3, pp. 2511-2528, 2017.
[9] D. Kwong, A. Hosseini, J. Covey, X. Xu, Y. Zhang, S. Chakravarty, and R. T. J. I. P. T. L. Chen, “Corrugated waveguide-based optical phased array with crosstalk suppression,” vol. 26, no. 10, pp. 991-994, 2014.
[10] Y. Liu, Z. Hao, L. Wang, J. Wang, J. Yu, B. Xiong, C. Sun, H. Li, Y. Han, and Y. Luo, "On-chip multi-beam emitting optical phased array for wide-angle LIDAR." CLEO: QELS_Fundamental Science. Optical Society of America, 2020.
[11] T. Komljenovic, R. Helkey, L. Coldren, and J. E. Bowers, “Sparse aperiodic arrays for optical beam forming and LIDAR,” Optics express, vol. 25, no. 3, pp. 2511-2528, 2017.
[12] D.-J. Seo, and H.-Y. Ryu, “Accurate simulation of a shallow-etched grating antenna on silicon-on-insulator for optical phased array using finite-difference time-domain methods,” Current Optics and Photonics, vol. 3, no. 6, pp. 522-530, 2019.
[13] A. Khavasi, L. Chrostowski, Z. Lu, and R. Bojko, “Significant crosstalk reduction using all-dielectric CMOS-compatible metamaterials,” IEEE Photonics Technology Letters, vol. 28, no. 24, pp. 2787-2790, 2016.
[14] Y. Yang, Y. Guo, Y. Huang, M. Pu, Y. Wang, X. Ma, X. Li, and X. Luo, “Crosstalk reduction of integrated optical waveguides with nonuniform subwavelength silicon strips,” Scientific reports, vol. 10, no. 1, pp. 1-8, 2020.
[15] R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO/sub 2,” IEEE Journal of Quantum Electronics, vol. 27, no. 8, pp. 1971-1974, 1991.
[16] H. Morino, T. Maruyama, and K. Iiyama, “Reduction of wavelength dependence of coupling characteristics using Si optical waveguide curved directional coupler,” Journal of lightwave technology, vol. 32, no. 12, pp. 2188-2192, 2014.
[17] S. Chen, Y. Shi, S. He, and D. Dai, “Low-loss and broadband 2× 2 silicon thermo-optic Mach–Zehnder switch with bent directional couplers,” Optics letters, vol. 41, no. 4, pp. 836-839, 2016.
[18] Y. Wang, Z. Lu, M. Ma, H. Yun, F. Zhang, N. A. Jaeger, and L. Chrostowski, “Compact broadband directional couplers using subwavelength gratings,” IEEE Photonics Journal, vol. 8, no. 3, pp. 1-8, 2016.
[19] S. P. Chan, C. E. Png, S. T. Lim, G. T. Reed, and V. M. Passaro, “Single-mode and polarization-independent silicon-on-insulator waveguides with small cross section,” Journal of lightwave technology, vol. 23, no. 6, pp. 2103, 2005.
[20] T. Aalto, Microphotonic silicon waveguide components: VTT Technical Research Centre of Finland, 2004.
[21] A. Yariv, and P. Yeh, Photonics: optical electronics in modern communications: Oxford University Press, 2007.
[22] H. Qiu, G. Jiang, T. Hu, H. Shao, P. Yu, J. Yang, and X. Jiang, “FSR-free add–drop filter based on silicon grating-assisted contradirectional couplers,” Optics letters, vol. 38, no. 1, pp. 1-3, 2013.
[23] L. B. Soldano, and E. C. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” Journal of lightwave technology, vol. 13, no. 4, pp. 615-627, 1995.
[24] M. Dakss, L. Kuhn, P. Heidrich, and B. Scott, “Errata: Grating Coupler for Efficient Excitation of Optical Guided Waves in Thin Films,” Applied Physics Letters, vol. 17, no. 6, pp. 268-268, 1970.
[25] R. Waldhäusl, B. Schnabel, P. Dannberg, E.-B. Kley, A. Bräuer, and W. Karthe, “Efficient coupling into polymer waveguides by gratings,” Applied optics, vol. 36, no. 36, pp. 9383-9390, 1997.
[26] J. W. J. P. Goodman, Englewood, Colorado, “Introduction to Fourier Optics, Roberts & Co,” 2005.
[27] Y. Zhang, Y.-C. Ling, K. Zhang, C. Gentry, D. Sadighi, G. Whaley, J. Colosimo, P. Suni, and S. B. J. O. e. Yoo, “Sub-wavelength-pitch silicon-photonic optical phased array for large field-of-regard coherent optical beam steering,” vol. 27, no. 3, pp. 1929-1940, 2019.
[28] H. Yoon, D.-S. Lee, S.-H. Kim, G. Kang, J. Shim, H. Rhee, N. Kwon, J.-Y. Kim, and H.-H. Park, “Wide-angle 2D beam-steering with Si-based 16×(1× 16) optical phased arrays,” Electronics Letters, vol. 56, no. 10, pp. 501-503, 2020.
[29] R.-A. Zhang, T.-S. Lin, W.-T. Liu, S.-H. Hsu, and C.-C. Chang, “Grating lobe-free beam steering through optical phase array using phase-compensated two index-mismatched silicon wires-based emitters,” Applied Sciences, vol. 10, no. 4, pp. 1225, 2020.

無法下載圖示 全文公開日期 2026/08/20 (校內網路)
全文公開日期 2031/08/20 (校外網路)
全文公開日期 2031/08/20 (國家圖書館:臺灣博碩士論文系統)
QR CODE