簡易檢索 / 詳目顯示

研究生: 王證都
Chung-tu Wang
論文名稱: 薄型化鋁熱管之製造與實驗研究
Fabrication and Experimental Study of the Thin Aluminum Heat Pipe
指導教授: 林顯群
Sheam-Chyun Lin
口試委員: 莊福盛
none
郭鴻森
none
李基禎
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 89
中文關鍵詞: 鋁熱管充填水量最大熱傳量輕量化薄型化
外文關鍵詞: aluminum heat pipe, filling water, maximum heat transfer rate, lighter, thinner
相關次數: 點閱:162下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

一般電腦產品的散熱模組設計,多數為熱管加上風扇及鰭片所組合,其中熱導管為散熱設計中關鍵零件之一;常見之熱管多以純銅為容器、純水為工作液體,但銅之密度為8.9 g/cm3,其單位重量非常重,在電子產品之發展趨勢走向輕量化及薄型化下,不利於3C產品的輕量化設計,所以散熱器的減重變成一個重要的研究題目。本研究之目的為熱管輕量化及薄型化,實驗中採用鋁銅複合材料為熱管容器,可較相同管壁厚度的純銅熱管減少約60%的重量,並研究規劃其製造流程,以及建立鋁熱管之最大熱傳量測試平台。
本實驗設計製造之鋁熱管,因內部設計有一層薄薄之純銅材料層,可隔絕工作液體與主材質鋁殼體直接接觸,而得以突破一般鋁熱管研究常遇到之工作液體相容性問題;所以就熱管的最大熱傳量而言,實驗顯示可完全達到與傳統銅水熱管相同的性能,在熱管厚度2.2mm甚至可達到最大熱傳量30瓦。至於在薄型化鋁熱管設計與充填水量的關係分析探討,由實驗結果發現在一般厚度時,增量充填確實會增加鋁熱管的最大熱傳量,但當內部空間高度小於0.9mm時,則增加水量過多反而會讓最大熱傳量下降;所以當熱管做薄型化設計時,進行充填水量的最佳化工作,必須將壓扁後熱管截面的幾何形狀列入考慮。


In fulfilling consumer’s requirement on reducing size and weight of mobile devices, especially the notebook, tablet, and cell phone, has generated a urgent demand for manufacturing the light-weight Aluminum heat pipe. Thus, the purpose of this study is to design and manufacture the Al heat pipe that uses pure water as the working medium. Obviously, the major advantages in utilizing Al heat pipe include the lighter weight and cheaper cost compared to the traditional copper heat pipe. However, there are several technical challenges, such as the welding, corrosion, and compatibility issues in using Al as the heat pipe container. Firstly, a thin copper layer is attached closely to the inside wall of Al pipe for preventing the direct contact with water; thus the corrosion and compatibility issues between water and Al can be solved. Also, the YAG laser welding technology is introduced for sealing two ends of Al heat pipe. Furthermore, the systematic procedures for manufacturing and testing this Al heat pipe are proposed and set up successfully.
Later, the amount of working medium and the flattened thickness of heat pipe are investigated for identifying the optimum values to yield the highest maximum heat transfer rate. Consequently, it is found that the maximum heat transfer rate enlarges for an increasing working-medium amount under a normal flattened thickness. Nevertheless, a decrease on maximum heat transfer rate is observed for the case of filling too much water when the height of vapor channel inside the heat pipe is less than 0.9 mm. Besides, the results illustrate that heat dissipating capability (30 watts) of the optimized heat pipe is almost identical to that of the traditional copper heat pipe with a 2.2 mm flattened thickness. Therefore, it is suggest that determining the optimized amount of working medium should take into account the cross-sectional geometry of heat pipe. In summary, this study presents a reliable and systematic scheme to fabricating the Al heat pipe.

摘要I ABSTRACTIII 目次VI 表目錄IX 圖目錄X 第一章 緒論1 1.1 前言1 1.2 研究動機與目的2 1.3 研究方法與步驟6 第二章 文獻回顧與熱管理論8 2.1 熱管研究發展回顧8 2.1.1 初期研究8 2.1.2 國內研究10 2.2 熱管特性極限12 2.2.1 毛細限制14 2.2.2 音速限制20 2.2.3 黏滯限制20 2.2.4 捲增限制21 2.2.5 沸騰限制22 第三章 熱管之設計與製造23 3.1 熱管設計23 3.1.1 熱管容器之材料選用23 3.1.2 毛細結構26 3.1.3 工作液體選用30 3.2 熱管製作36 3.2.1 裁切39 3.2.2 端部加工39 3.2.3 超音波清洗43 3.2.4 毛細結構置入、充填及真空除氣45 3.2.5 端部熔接48 第四章 熱管性能測試之實驗設計53 4.1 測試規格53 4.2 測試定義及實驗設備55 4.2.1 熱管測試長度與量測點配置55 4.2.2 測試設備58 4.2.3 測試系統熱損失63 4.3 最大熱傳量定義64 第五章 實驗結果與討論70 5.1 不同厚度之鋁熱管性能70 5.2 水量變化與鋁熱管性能關係71 5.3 逆重力下之鋁熱管性能78 第六章 結論84 6.1 研究結論84 6.2 未來工作與建議86 參考文獻87

[1]http://www.lanl.gov/science/NSS/issue1_2011/story6full.shtml
[2]R. S. Gaugler, “Heat Transfer Devices”, U. S. Patent 2,350,348, 1944.
[3]G. M. Grover, T. P. Cotter, and G. F. Erikson, “Structures of Very High Thermal Conductivity”, Journal of Applied Physics, Vol. 35, pp 1990-1991, 1964.
[4]T. P. Cotter, “Theory of Heat Pipe,” Los Alamos Scientific Laboratory Report No. LA-3246-MS, 1965.
[5]C.L. Tien and K.H Sun, “Minimum Meniscus Radius of Heat Pipe with a Wicking Materials”, International Journal Heat Mass Transfer, Vol. 14, pp 1853-1855, 1970.
[6]C.A. Busse, “Pressure Drop in the Vapor Phase of Long Heat Pipes”, Proc. IEEE Conf. of Thermionic Conversion Specialists, Palo Alto, CA, pp. 391-398, 1967
[7]T. P. Cotter, “Principles and Prospects for Micro Heat Pipes,” Porc. 5th Int. Heat Pipe Conf., Tsukuba, Japan, pp. 328-335, 1984.
[8]依日光譯, “熱管技術理論實務” 日本熱管技術協會編,復漢出版社社,1986年。
[9]K. T. Feldman, “Flat Plate Heat Pipe with Structure Wicks” U. S. Patent 3,613,778, 1969.
[10]H. Van Ooijen and C. J. Hoogendoorn, “Vapor Flow Calculation in a Flat Heat Pipe,” AIAA J., Vol. 17, pp. 1251-1259, 1979.
[11]黃玉年,“矽質為熱管之研製與測試”,淡江大學機械工程研究所碩士論文,1999年。
[12]劉榮祥,“燒結式微熱管之製造與實驗研究”,台灣科技大學機械工程研究所碩士論文,2003年。
[13]劉秉翰,“高分子毛細結構在迴路式熱管之應用研究”,台灣大學機械工程研究所碩士論文,2005年。
[14]許智穎,“燒結與溝槽式複合毛細結構微熱管之製造與實驗研究”,台灣科技大學機械工程研究所碩士論文,2008年。
[15]甯道遠,“鑽石/銅複合材料製備毛細微結構應用於平板式熱管”,國防大學機械工程研究所碩士論文,2010年。
[16]P. D. Dunn and D. A. Reay, Heat Pipes, 4th Edition, Headington Hill, England, 1994.
[17]S. W. Chi, “Heat Pipe Theory and Practice”, McGraw-Hill, Washington, New York, 1976.
[18]E. K. Levy, “Theoretical Investigation of Heat Pipes Operating at Low Vapor Pressure,” Journal of Engineering for Industry, Vol. 90, pp. 547-552, 1968.
[19]C. A. Busse, “Theory of the Ultimate Heat Transfer Limit of Cylindrical Heat Pipes,” Int. J. Heat Mass Transfer, Vol. 16, pp. 169-186, 1973.
[20]T. P. Cotter, “Heat Pipe Startup Dynamics”, Proc. IEEE Conf. of Thermionic Conversion Specialists, Palo Alto, CA, pp 344-348, 1967.

[21]A. Faghri, “Heat Pipe Science and Technology”, Taylor and Francis, Washington, DC, 1995.
[22]S. B. Riffat, S. A. Omer, and X. L. Ma, ”A Novel Thermoelectric Refrigeration System Employing Heat Pipe and a Phase Change Material”, SDOS Renewable Energy, pp. 313-323, 2001.
[23]http://www.gdcopper.com/gd/en/display_pzbz.asp?Action=ShowChild&ClassID=12&NClassID=24
[24]H. J. Long, Z. Xin, C. J. Cong, and L. Yong “Forming Defects of Axial Inner Micro-grooved Copper Tube Through Two-Split Dies Rotary Swaging Process” Materials Science & Technology, Vol. 20 , No.4, pp116-120, 2012.
[25]William T. Silfvast, ”Laser Fundamentals”, the Press Syndicate of the University of Cambridge, New York, 2004.
[26]TTMA, ” Standard Testing Method for the Performance of Miniature Heat Pipes”, 2012.
[27]F. J. Higuera, A. Medina, and A. Liñán, ”Capillary Rise of a liquid Between Two Vertical Plates Making a Small Angle”, Physics of fluids 20, 102102, 2008.

無法下載圖示
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE