簡易檢索 / 詳目顯示

研究生: 王祖嫻
Tsu-Hsien Wang
論文名稱: 石墨烯與二硫化錸應用於表面增強拉曼散射基材
Graphene and Rhenium Disulfide for Surface-Enhanced Raman Scattering Substrates
指導教授: 周賢鎧
Shyan-kay Jou
口試委員: 周賢鎧
Shyan-kay Jou
黃柏仁
Bohr-Ran Huang
施文欽
Wen-Ching Shih
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 115
中文關鍵詞: 石墨烯二硫化錸拉曼增強散射
外文關鍵詞: Graphene, Rhenium Disulfide, SERS
相關次數: 點閱:239下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以石墨烯與二硫化錸為材料製作表面增強拉曼散射之基材(SERS),本實驗以化學氣象沉積在銅箔上沉積石墨烯,並轉移至300nm之氧化矽基板,以石墨烯或氧化石墨烯為襯底並以化學氣象沉積生長二硫化錸(ReS2) ,以R6G作為拉曼增強散射目標分子,以拉曼光譜之614 cm-1作為目標特徵峰為測量材料基本性質,以SEM、AFM做表面型態分析,以XPS、Raman、XRD做結構分析,以UV、PL做光學分析,並且用四點探針量測樣品的電阻。
    本實驗合成之石墨烯為雙層結構,ID/IG比為0.075,I2D/IG比為1.53,以CVD合成之二硫化錸以UV測量光譜之吸收波並以Tauc方法計算能隙為1.56 eV,以PL螢光光譜測量能隙為1.55 eV。
    本研究以石墨烯與二硫化錸主組合為四種SERS基材,分別為純二硫化錸(SiO2/ReS2)、石墨烯與二硫化錸(SiO2/G/ReS2)、氧化石墨烯與二硫化錸(SiO2/GO/ReS2)和氧化石墨烯濺鍍錸顆粒沉積二硫化錸(SiO2/GO/Re/ReS2)並以吸附10-2M R6G之氧化矽基板作為標準基板計算在R6G濃度10-7 M時各樣品之強化因子(AEF),SiO2/ReS2、SiO2/G/ReS2、SiO2/GO/ReS2、SiO2/GO/Re/ReS2之AEF分別為、4.5x104、7.3 x104、7.9 x104、1.4 x105。


    This study focuses on the fabrication of surface-enhanced Raman scattering (SERS) substrates using graphene and rhenium disulfide (ReS2) as materials. Graphene was deposited on copper foil through chemical vapor deposition (CVD) and transferred onto a silicon wafer with 300 nm of silicon oxide (SiO2). Graphene or oxidized graphene (GO) was used as a substrate for the chemical vapor deposition growth of ReS2. The target molecule for Raman-enhanced scattering was Rhodamine 6G (R6G), and the characteristic peak at 614 cm-1 was measured. Various characterization techniques were employed to analyze the materials' properties, including scanning electron microscopy (SEM) and atomic force microscopy (AFM) for surface morphology analysis, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and X-ray diffraction (XRD) for elemental analysis, and UV-Vis spectroscopy (UV) and photoluminescence spectroscopy (PL) for optical analysis. The sheet resistance of the samples was measured using a four-point probe.
    The synthesized graphene in this work was a bilayer structure, with an ID/IG ratio of 0.075 and an I2D/IG ratio of 1.53. The ReS2 synthesized via chemical vapor deposition (CVD) was characterized by UV absorption spectroscopy, yielding an energy gap (bandgap) of 1.56 eV using the Tauc method. The PL fluorescence spectrum indicated an energy gap of 1.55 eV.
    The study focused on four main configurations: pure ReS2 on SiO2 (SiO2/ReS2), graphene and ReS2 on SiO2 (SiO2/G/ReS2), oxidized graphene and ReS2 on SiO2 (SiO2/GO/ReS2), and oxidized graphene coated with rhenium particles and ReS2 on SiO2 (SiO2/GO/Re/ReS2). The enhancement factors (AEFs) of these samples with 10-7 M R6G were obtained using a standard oxidized silicon (SiO2) wafer, adsorbed with a concentration of R6G of 10-2 M. The AEF values for SiO2/ReS2, SiO2/G/ReS2, SiO2/GO/ReS2, and SiO2/GO/Re/ReS2 were 4.5x104, 7.3x104, 7.9x104, and 1.4x105, respectively.

    摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VIII 表目錄 XIII 第1章、 緒論 1 第2章、 文獻回顧 2 2.1 碳的發展與歷史 2 2.2 石墨烯的結構與性質 3 2.3 過渡金屬二硫化物的結構與性質 6 2.4 石墨烯的製備方法 8 2.4.1 機械剝離法(Mechanical exfoliation) 8 2.4.2 化學合成法(Chemical synthesis) 9 2.4.3 化學氣相沉積法(Chemical vapor deposition, CVD) 9 2.4.4 碳化矽磊晶成長法(Epitaxial Growth) 12 2.4.5 固態碳源成長法 13 2.5 過渡金屬二硫化物(TMDs)的製備方法 15 2.5.1 機械剝離法(Mechanical cleavage) 15 2.5.2 液相剝離法(Liquid phase exfoliation) 17 2.5.3 化學氣相沉積(Chemical Vapor Deposition, CVD) 18 2.5.4 水熱法(Hydrothermal method) 20 2.6 拉曼散射理論 22 2.7 表面電漿理論 24 2.8 表面增強拉曼散射(Surface-enhanced Raman scattering) 26 2.8.1 表面增強拉曼之電磁增強(Electromagnetic enhancement) 27 2.8.2 表面增強拉曼之化學增強(Electromagnetic enhancement) 29 2.9 石墨烯在SERS的應用 (G-SERS) 30 2.10 金屬二硫化物之SERS應用 35 2.11 研究動機 37 第3章、 實驗儀器與實驗方法 38 3.1 實驗藥品與規格 38 3.2 實驗流程 39 3.3 實驗步驟 39 3.4 實驗設備與分析儀器 45 3.4.1 磁控式濺鍍系統 46 3.4.2 化學氣相沉積系統 47 3.4.3 紫外光臭氧清洗機 48 3.4.4 紫外光可見光光譜儀 49 3.4.5 螢光光譜儀 50 3.4.6 橢圓偏光儀 51 3.4.7 場發射掃描式電子顯微鏡 52 3.4.8 原子力顯微鏡 53 3.4.9 顯微拉曼光譜儀 54 3.4.10 X射線光電子能譜分析儀 55 3.4.11 X光繞射儀 56 3.4.12 四點探針 57 第4章、 結果與討論 58 4.1 材料基本性質分析 58 4.1.1 薄膜形貌分析 58 4.1.2 薄膜結構分析 63 4.1.3 薄膜元素分析 66 4.1.4 薄膜光學性質分析 72 4.1.5 薄膜電阻分析 75 4.2 SERS分析 75 4.3 石墨烯之SERS分析 76 4.4 石墨烯與二硫化錸之SERS分析 78 第5章、 結論與未來展望 86 5.1 結論 86 5.2 未來展望 86 參考文獻 87 附錄 101

    [1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science, 306, 666 (2004).
    [2] N. Sharma, R. D. Gupta, R. C. Sharma, S. Dayal, A. S. Yadav, Graphene: An Overview of Its Characteristics and Applications, Materials Today: Proceedings, 47(2021), 2752–2755.
    [3] M. Yang, Y. Wang, L. Dong, Z. Xu, Y. Liu, N. Hu, C. Peng, Gas Sensors Based on Chemically Reduced Holey Graphene Oxide Thin Films, Nanoscale Research Letters, 14(2019), 218.
    [4] G. Ruess, F. Vogt, Höchstlamellarer Kohlenstoff aus Graphitoxyhydroxyd Monatshefte für, Chemie, 78(1948), 222–242.
    [5] M. W. Roberts, C. B. Clemons, J. P. Wilber, G. W. Young, A. Buldum, D. D. Quinn, Continuum Plate theory and atomistic modeling to find the flexural rigidity of a graphene sheet interacting with a substrate, Journal of Nanotechnology, 2010 (2010).
    [6] E.P. Randviir, D.A.C. Brownson, C.E. Banks, A decade of graphene research: production, applications and outlook Mater. Today, 17(2014), 426-432.
    [7] G. Yang, L. Li, W. B. Lee, M. C. Ng, Structure of Graphene and Its Disorders: A Review. Science and Technology of Advanced Materials, 19(2018), 613–648.
    [8] V. B. Mbayachi, E. Ndayiragije, T. Sammani, S. Taj, E. R. Mbuta, A. ullah khan, Graphene synthesis, characterization and its applications: a review, Results in Chemistry, 3(2021), 100163.
    [9] M. Skoda, I. Dudek, A. Jarosz, and D. Szukiewicz, Graphene: One Material, Many Possibilities–Application Difficulties in Biological Systems, Journal of Nanomaterials, 2014 (2014).
    [10] V. N. Do, T. H. Pham, Graphene and Its One-Dimensional Patterns: From Basic Properties towards Applications, Advances in natural science: nanoscience and nanotechnology, 1(2010), 14.
    [11] J. Phiri, P. Gane, T. C. Maloney, General overview of graphene: production, properties and application in polymer composites, Materials Science and Engineering B, 215 (2017), 9-28.
    [12] D. G. Papageorgiou, I. A. Kinloch, R. J. Young, Mechanical Properties of Graphene and Graphene-Based Nanocomposites, Progress in Materials Science, 90(2017), 75-127.
    [13] A. King, G. Johnson, D. Engelberg, W. Ludwig, J. Marrow, Observations of Intergranular Stress Corrosion Cracking in a Grain-Mapped Polycrystal, Science, 321 (2008), 382-385.
    [14] S. Chen, A. L. Moore, W. Cai, J. W. Suk, J. An, C. Mishra, C. Amos, C. W. Magnuson, J. Kang, L. Shi, R.S. Ruoff, Raman Measurements of Thermal Transport in Suspended Monolayer Graphene of Variable Sizes in Vacuum and Gaseous Environments, ACS Nano, 5(2011), 321-328.
    [15] W. Choi, N. Choudhary, G. H. Han, J. Park, D. Akinwande, Y. H. Lee, Recent development of two-dimensional transition metal dichalcogenides and their applications, Materials Today, 3(2017), 116-130.
    [16] L. Lin, W. Lei, S. Zhang, Y. Liu, G. G. Wallace, J. Chen, Two-dimensional transition metal dichalcogenides in supercapacitors and secondary batteries, Energy Storage Materials, 19(2019), 408-423.
    [17] C. Gong, Y. Zhang, W. Chen, J. Chu, T. Lei, J. Pu, J. Xiong, Electronic and optoelectronic applications based on 2D novel anisotropic transition metal dichalcogenides, Advance Science, 4(2017), 1700231.
    [18] D. Xiang, T. Liu, J. Wang, P. Wang, L. Wang, Y. Zheng, Y. Wang, J. Gao, K. W. Ang, G. Eda, W. Hu, L. Liu, W. Chen, Anomalous Broadband Spectrum Photodetection in 2D Rhenium Disulfide Transistor, Advance Optical Material, 7(2019), 1901115.
    [19] Y. Chen, Z. Tian, X. Wang, N. Ran, C. Wang, A. Cui, H. Lu, M. Zhang, Z. Xue, Y. Mei, P. K. Chu, J. Liu, Z. Hu, Z. Di, 2D Transition Metal Dichalcogenide with Increased Entropy for Piezoelectric Electronics, Advance Material, 34(2022), 2201630.
    [20] E. Lee, Y. S. Yoon, D. Kim, Two-Dimensional Transition Metal Dichalcogenides and Metal Oxide Hybrids for Gas Sensing, ACS Sensors, 3(2018), 2045-2060.
    [21] H. Hu, A. Zavabeti, H. Quan, W. Zhu, H. Wei, D. Chen, J. Z. Ou, Recent advances in two-dimensional transition metal dichalcogenides for biological sensing, Biosensors and Bioelectronics, 142(2019), 111573.
    [22] R. Lv, J. A. Robinson, R. E. Schaak, D. Sun, Y. Sun, T. E. Mallouk, M. Terrones, Transition Metal Dichalcogenides and Beyond: Synthesis, Properties, and Applications of Single- and Few-Layer Nanosheets, Accounts of Chemical Research, 48(2015), 56-64.
    [23] M. Kang, B. Kim, S. H. Ryu, S. W. Jung, J. Kim, L. Moreschini, C. Jozwiak, E. Rotenberg, A. Bostwick, K. S. Kim, Universal Mechanism of Band-Gap Engineering in Transition-Metal Dichalcogenides, Nano Letters, 17(2017), 1610-1615.
    [24] M. Yi, Z. Shen, A review on mechanical exfoliation for the scalable production of graphene, Journal Material Chemical A, 3 (2015), 11700-11715.
    [25] R. Jakhar, J. E. Yap, R. Joshi, Microwave reduction of graphene oxide, Carbon, 170 (2020), 277-293.
    [26] A. T. Smith, A. M. LaChance, S. Zeng, B. Liu, L. Sun, Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites, Nano Materials Science, 1(2019), 31-47.
    [27] C. Mattevi, H. Kima, M. Chhowalla, A review of chemical vapour deposition of graphene on copper, Journal of Materials Chemistry, 21(2011), 3324-3334.
    [28] Y. Xue, B. Wu, Y. Guo, L. Huang, L. Jiang, J. Chen, D. Geng, Y. Liu, W. Hu, G. Yu, Synthesis of large-area, few-layer graphene on iron foil by chemical vapor deposition, Nano Research, 4(2011), 1208-1214.
    [29] H. Ago, Y. Ito, N. Mizuta, K. Yoshida, B. Hu, C. M. Orofeo, M. Tsuji, K. Ikeda, S. Mizuno, Epitaxial Chemical Vapor Deposition Growth of Single-Layer Graphene over Cobalt Film Crystallized on Sapphire, ACS Nano 4(2010), 7407-7414.
    [30] L. Huang, Q. H. Chang, G. L. Guo, Y. Liu, Y. Q. Xie, T. Wang, B. Ling, H. F. Yang, Synthesis of high-quality graphene films on nickel foils by rapid thermal chemical vapor deposition, Carbon, 50(2012), 551-556.
    [31] J. Nam, D. C. Kim, H. Yun, D. H. Shin, S. Nam, W. K. Lee, J. W. Hwang, S. W. Lee, H. Weman, K. S. Kim, Chemical vapor deposition of graphene on platinum: growth and substrate interaction, Carbon, 111(2017), 733-740.
    [32] Y. Zhang, L. Zhang, C. Zhou, Review of Chemical Vapor Deposition of Graphene and Related Applications, Accounts of Chemical Research 46(2013), 2329-2339.
    [33] X. Chen, L. Zhang, S. J. S. M. Chen, Large area CVD growth of graphene, 210 (2015), 95-108.
    [34] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, Large-area synthesis of high-quality and uniform graphene films on copper foils, Science, 324 (2009), 1312-1314.
    [35] H. Benjamin, R. Jean-Pierre, Role of Cu foil in-situ annealing in controlling the size and thickness of CVD graphene domains, Carbon, 129 (2018), 270-280.
    [36] S. Choubak, P. L. Levesque, E. Gaufres, M. Biron, P. Desjardins, R. Martel, Graphene CVD: Interplay Between Growth and Etching on Morphology and Stacking by Hydrogen and Oxidizing Impurities, The Journal of Physical Chemistry C, 118 (2014), 21532-21540.
    [37] Y. Jin, B. Hu, Z. Wei, Z. Luo, D. Wei, Y. Xi, Y. Zhang, Y. Liu, Roles of H2 in annealing and growth times of graphene CVD synthesis over copper foil, Journal of Material Chemistry A, 2(2014), 16208-16216.
    [38] M. Hadi Khaksaran, I. I. Kaya, On the Dynamics of Intrinsic Carbon in Copper during the Annealing Phase of Chemical Vapor Deposition Growth of Graphene, ACS Omega 4 (2019), 9629-9635.
    [39] H. Tetlow, J. Posthuma de Boer , I. J. Ford, D. D. Vvedenskyb, J. Coraux,
    L. Kantorovich, Growth of epitaxial graphene: Theory and experiment, Physics Reports, 542(2014), 195-295.
    [40] A. A. Lebedev, S. Y. Davydov, I. A. Eliseyev, A. D. Roenkov, O. Avdeev, S. P. Lebedev, Y. Makarov, M. Puzyk, S. Klotchenko, A. S. Usikov, Graphene on SiC Substrate as Biosensor: Theoretical Background, Preparation, and Characterization, Materials, 14(2021), 590.
    [41] T. Ohta, N. C. Bartelt, S. Nie, K. Thürmer, G. L. Kellogg, Role of Carbon Surface Diffusion on the Growth of Epitaxial Graphene on SiC, Physical Review B, 81 (2010), 121411.
    [42] M. L. Bolen, S. E. Harrison, L. B. Biedermann, M. A. Capano, Graphene formation mechanisms on 4H-SiC (0001), Physical Review B , 80(2009), 1115433.
    [43] T. Liang, Y. Kong, H. Chen, M. Xu, From Solid Carbon Sources to Graphene, Chinese Journal of Chemistry, 34(2016), 32-40.
    [44] Z. Sun, Z. Yan, J. Yao, E. Beitler, Growth of graphene from solid carbon sources, Nature, 468(2010), 549-552.
    [45] Y. Bleu, F. Bourquard, T. Tite, A-S Loir, C. Maddi, C. Donnet, F. Garrelie, Review of Graphene Growth From a Solid Carbon Source by Pulsed Laser Deposition (PLD), Frontiers in Chemistry, 6(2018), 572.
    [46] I. Kumar, A. Khare, Multi- and few-layer graphene on insulating substrate via pulsed laser deposition technique, Applied Surface Science, 317(2014), 1004-1009.
    [47] Y. Li, G. Kuang, Z. Jiao, L. Yao, R. Duan, Recent progress on the mechanical exfoliation of 2D transition metal dichalcogenides, Materials Research Express 9 (2022), 122001.
    [48] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors, Nature Nanotechnology, 6(2011), 147-150.
    [49] G. Magda, J. Pető, G. Dobrik, C. Hwang, L. P. Biró, L. Tapasztó, Exfoliation of large-area transition metal chalcogenide single layers, Scientific Report, 5(2015), 14714.
    [50] S. Rani, M. Sharma, D. Verma, A. Ghanghass, R. Bhatia, I. Sameera, Two-dimensional transition metal dichalcogenides and their heterostructures: Role of process parameters in top-down and bottom-up synthesis approaches, Materials Science in Semiconductor Processing, 139(2022), 106313.
    [51] A. Amiri, M. Naraghi, G. Ahmadi, M. Soleymaniha, M. Shanbedi, A review on liquid-phase exfoliation for scalable production of pure graphene, wrinkled, crumpled and functionalized graphene and challenges, Flatchem, 8(2018), 40-71.
    [52] V. Nicolosi, M. Chhowalla, M. G. Kanatzidis, M. S. Strano, J. N. Coleman, Liquid exfoliation of layered materials, Science, 340(2013), 1226419.
    [53] G. Kakavelakis, A. E. Del Rio Castillo, V. Pellegrini, A. Ansaldo, P. E. Tzourmpakis, R. Brescia, M. Prato, E. Stratakis, E. Kymakis, F. Bonaccorso, Size-Tuning of WSe2 Flakes for High Efficiency Inverted Organic Solar Cells, ACS Nano, 11(2017), 3517-3531.
    [54] Z. Cai, B. Liu, X. Zou, H. -M. Cheng, Chemical Vapor Deposition Growth and Applications of Two-Dimensional Materials and Their Heterostructures, Chemical Reviews ,118(2018), 6091-6133.
    [55] K. L. Choy, Chemical vapour deposition of coatings, Progress in Materials Science, 48(2003), 57-170.
    [56] Y. Zhang, Y. Zhang, Q. Ji, J. Ju, H. Yuan, J. Shi, T. Gao, D. Ma, M. Liu, Y. Chen, X. Song, H. Y. Hwang, Y. Cui, Z. Liu, Controlled Growth of High-Quality Monolayer WS2 Layers on Sapphire and Imaging Its Grain Boundary, ACS Nano, 7(2013), 8963-8971.
    [57] Z. Zhu, S. Zhan, J. Zhang, G. Jiang, M. Yi, J. Wen, Influence of growth temperature on MoS2 synthesis by chemical vapor deposition, Materials Research Express, 6 (2019), 095011.
    [58] G. Yang, S.-J. Park, Conventional and Microwave Hydrothermal Synthesis and Application of Functional Materials: A Review, Materials, 12(2019), 1177.
    [59] X. Zhang, G. Ma, J. Wang, Hydrothermal synthesis of two-dimensional MoS2 and its applications, Tungsten, 1(2019), 59-79.
    [60] C. Raman, K. Krishnan, A New Type of Secondary Radiation, Nature, 121(1928), 501-502.
    [61] G. S. Bumbrah, R. M. Sharma, Raman spectroscopy - Basic principle, instrumentation and selected applications for the characterization of drugs of abuse, Egyptian Journal of Forensic Sciences, 6(2016), 209-215.
    [62] R. Petry, M. Schmitt, J. Popp, Raman spectroscopy- a prospective tool in the life sciences, Chemphyschem, 4(2003), 14-30.
    [63] C. J. Powell, J. B. Swan, Origin of the characteristic electron energy losses in aluminum, Physical Review, 115(1959), 869-875.
    [64] C. J. Powell, J. B. Swan, Origin of the characteristic electron energy losses in magnesium, Physical Review, 116(1959), 81-83.
    [65] J. Zhang, L. Zhang, W. Xu, Surface plasmon polaritons: physics and applications, Journal of physicx D: applied physics, 45(2012), 113001.
    [66] J. M. Pitarke, V. M. Silkin, E. V. Chulkov, P. M. Echenique, Theory of surface plasmons and surface-plasmon polaritons, Reports on progress in physics, 70(2006), 1.
    [67] Q. F. He, Y. J. Zhang, Z. L. Yang, J. C. Dong, X. M. Lin, J. F. Li, Surface-Enhanced Raman Spectroscopy: Principles, Methods, and Applications in Energy Systems, Chinese Journal of Chemistry, 41(2023), 355-369.
    [68] J. Langer, D. Jimenez de Aberasturi, J. Aizpurua, R. A. Alvarez-Puebla, B. Auguié, J. J. Baumberg, G. C. Bazan, S. E. J. Bell, A. Boisen, A. G. Brolo, J. Choo, D. Cialla-May, V. Deckert, L. Fabris, K. Faulds, F. J. García de Abajo, R. Goodacre, D. Graham, A. J. Haes, C. L. Haynes, C. Huck, T. Itoh, M. Käll, J. Kneipp, N. A. Kotov, H. Kuang, E. C. Le Ru, H.-K. Lee, J.-F. Li, X.-Y. Ling, S. A. Maier, T. Mayerhöfer, M. Moskovits, K Murakoshi, J.-M. Nam, S. Nie, Y. Ozaki, I. Pastoriza-Santos, J. Perez-Juste, J. Popp, A. Pucci, S. Reich, B. Ren, G. C. Schatz, T.Shegai, S. Schlücker, L.-L. Tay, K. G. Thomas, Z.-Q. Tian, R. P. V. Duyne, T. Vo-Dinh, Y. Wang, K. A. Willets, C. Xu, H. Xu, Y. Xu, Y. S. Yamamoto, B. Zhao, L. M. Liz-Marzán, Present and Future of Surface-Enhanced Raman Scattering, ACS Nano, 14(2020), 28-117.
    [69] X.-J. Chen, G. Cabello, D.-Y. Wu, Z.-Q. Tian, Surface-enhanced Raman spectroscopy toward application in plasmonic photocatalysis on metal nanostructures, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 21(2014), 54-80.
    [70] C. Zong, M. Xu, L.-J. Xu, T. Wei, X. Ma, X.-S. Zheng, R. Hu, B. Ren, Surface-Enhanced Raman Spectroscopy for Bioanalysis: Reliability and Challenges, Chemical Reviews, 118(2018), 4946-4980.
    [71] D. M. Solís, J. M. Taboada, F. Obelleiro, L. M. Liz-Marzán, F. Javier García de Abajo, Optimization of Nanoparticle-Based SERS Substrates through Large-Scale Realistic Simulations, ACS Photonics, 4(2017), 329-337.
    [72] S. Kumar , P. Kumar, A. Das, C. S. Pathak, Surface-enhanced Raman scattering: introduction and applications, IntechOpen, (2020), 1-24.
    [73] D. J. Trivedi, B. Barrow, G. C. Schatz, Understanding the chemical contribution to the enhancement mechanism in SERS: Connection with Hammett parameters, Journal of Chemical Physics, 153(2020), 124706.
    [74] S. M. Morton, L. Jensen, Understanding the Molecule-Surface Chemical Coupling in SERS, Journal of the American Chemical Society, 131(2009), 4090-4098.
    [75] H.S. Lai, F.G. Xu, Y. Zhang, L. Wang, Recent progress on graphene-based substrates for surface-enhanced Raman scattering applications, Journal of Materials Chemistry B, 6(2018), 4008-4028.
    [76] X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, Z. Liu, Can Graphene be used as a Substrate for Raman Enhancement?, Nano Letters, 10(2010), 553-561.
    [77] W. Xu, X. Ling, J. Xiao, M. S. Dresselhaus, J. Kong, H. Xu, Z. Liu, J. Zhang, Surface enhanced Raman spectroscopy on a flat graphene surface, Proceedings of the National Academy of Sciences of the United States of America, 109(2012), 9281-9286.
    [78] W. Fan, Y.-H. Lee, S. Pedireddy, Q. Zhang, T. Liu, X.-Y. Ling, Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing, Nanoscale, 6(2014), 4843-4851.
    [79] E. Zhang, Z. Xing, D. Wan1, H. Gao, Y. Han, Y. Gao, H. Hu, Z. Cheng, T. Liu, Surface-enhanced Raman spectroscopy chips based on two-dimensional materials beyond graphene, Journal of Semiconductors, 42(2021), 051001.
    [80] L. Wang, D.-Q. Yu, B.-Q. Huang, Z.-Y. Ou, L. Tao, L.-L. Tao, Z.-Q. Zheng, J. Liu, Y.-B. Yang, A.-X. Wei, Y. Zhao, Large-area ReS2 monolayer films on flexible substrate for SERS based molecular sensing with strong fluorescence quenching, Applied Surface Science, 542 (2021), 148757.
    [81] M. Alamri, R. Sakidja, R. Goul, S. Ghopry, J. Z. Wu, Plasmonic Au Nanoparticles on 2D MoS2/Graphene van der Waals Heterostructures for High-Sensitivity Surface-Enhanced Raman Spectroscopy, ACS Applied Nano Materials, 2(2019), 1412-1420.
    [82] T. Jena, M. T. Hossain, U. Nath, U. Nath, M. Sarma, H. Sugimoto, M. Fujii, P. K. Giri, Evidence for intrinsic defects and nanopores as hotspots in 2D PdSe2 dendrites for plasmon-free SERS substrate with a high enhancement factor, npj 2d materials and applications, 8(2023).
    [83] S.S. Singha, S. Mondal, T.S. Bhattacharya, L. Das, K. Sen, B. Satpati, K. Das, A. Singha, Au nanoparticles functionalized 3D-MoS2 nanoflower: an efficient SERS matrix for biomolecule sensing, Biosensors and Bioelectronics, 119(2018), 10-17.
    [84] F. S. Rocha, A. J. Gomes, C. N. Lunardi, S. Kaliaguine, G. S. Patience, Experimental methods in chemical engineering: Ultraviolet visible spectroscopy-UV-Vis, The canadian journal of chemical engineering, 96(2018), 2512-2517.
    [85] M. Tebyetekerwa, J. Zhang, Z. Xu, T. N. Truong, Z. Yin, Y. Lu, S. Ramakrishna, D. Macdonald, H. T. Nguyen, Mechanisms and Applications of Steady-State Photoluminescence Spectroscopy in Two-Dimensional Transition-Metal Dichalcogenides, ACS Nano, 14(2020), 14579-14604.
    [86] Y. Okano, Scanning Electron Microscopy, Materials Science, 2016, 563-569.
    [87] G. Zeng, Y. Duan, F. Besenbacher, M. Dong, Nanomechanics of amyloid materials studied by atomic force microscopy, Atomic Force Microscopy Investigations into Biology-From Cell to Protein, (2012).
    [88] A. Downes, A. Elfick, Raman spectroscopy and related techniques in biomedicine Sensors , Basel, 10(2010), 1871-1889.
    [89] H. Seyama, M. Soma, B. K. G. Theng, X-ray photoelectron spectroscopy, Developments in Clay Science. Elsevier, 5(2013), 161-176.
    [90] S. Nasir, M. Z. Hussein, Z. Zainal, N. A. Yusof, S. Afif Mohd Zobir, I. Mustapha Alibe , Potential valorization of by-product materials from oil palm: A review of alternative and sustainable carbon sources for carbon-based nanomaterials synthesis, BioResources, 14(2019), 2352-2388.
    [91] K. Inaba, S. Kobayashi, K. Uehara, A. Okada, S. Reddy and T. Endo, High Resolution X-Ray Diffraction Analyses of (La,Sr)MnO3/ZnO/Sapphire(0001) Double Heteroepitaxial Films, Advances in Materials Physics and Chemistry, 3(2013), 72-89.
    [92] R. S. Waremra, P. Betaubun, Analysis of Electrical Properties Using the four point
    Probe Method, 73(2018), 181-192.
    [93] S. Bashir, M. S. Rafique, M. Khaleeq-Ur-Rahman, Faizan-Ul-Haq, B. R. Alvina, CO2 and Nd: YAG laser radiation induced damage in aluminium, Fizika A: a journal of experimental and theoretical physics, 15(2006), 181-192.
    [94] M. B. Askari, P. Salarizadeh, S. M. Rozati, M. Seifi, Synthesis and characterization of rhenium disulfide nanosheets decorated rGO as electrode towards hydrogen generation in different media, Applied Physics A, 125(2019), 1-9.
    [95] D. J. Morgan, XPS insights: Asymmetric peak shapes in XPS, Surface and Interface Analysis, (2023).
    [96] X. Liu, J. Zhou, J. Luo, H. Shi, T. You, X. Ou, V. Botcha, F. Mu, T. Suga, X. Wang, S. Huang, ReS2 on GaN Photodetector Using H+ Ion-Cut Technology, ACS Omega, 8 (2023), 457-463.
    [97] P. Makuła, M. Pacia, W. Macyk, How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV-Vis Spectra, The Journal of Physical Chemistry Letters, 9(2018), 6814-6817.
    [98] K. Dileep, R. Sahu, S. Sarkar, S. C. Peter, R. Datta, Layer specific optical band gap measurement at nanoscale in MoS2 and ReS2 van der Waals compounds by high resolution electron energy loss spectroscopy, Journal of Applied Physics, 119(2016), 114309.
    [99] B. Jariwala, D. Voiry, A. Jindal, B. A. Chalke, R. Bapat, A. Thamizhavel, M. Chhowalla, M. Deshmukh, A. Bhattacharya, Synthesis and Characterization of ReS2 and ReSe2 Layered Chalcogenide Single Crystals, Chemistry of Materials , 28(2016), 3352-3359.
    [100] E. C. Le Ru, E. Blackie, M. Meyer, P. G. Etchegoin, Surface Enhanced Raman Scattering Enhancement Factors:  A Comprehensive Study, The Journal of Physical Chemistry C, 111(2007), 13794-13803.
    [101] R. Lu, A. Konzelmann, F. Xu, Y. Gong, J. Liu, Q. Liu, M. Xin, R. Hui, J.Z. Wu.
    High sensitivity surface enhanced Raman spectroscopy of R6G on in situ fabricated Au nanoparticle/graphene plasmonic substrates, Carbon, 86(2015), 78-85.
    [102] K. Keyshar, Y. Gong, G. Ye, G. Brunetto, W. Zhou, D. P. Cole, K. Hackenberg, Y. He, L. Machado, M. Kabbani, A. H. C. Hart, B. Li, D. S. Galvao, A. George, R. Vajtai, C. S. Tiwary, P. M. Ajayan, Chemical vapor deposition of monolayer rhenium disulfide (ReS2), Advanced Materials, 31(2015), 4640-4648.
    [103] L. Wang, D. Yu, B. Huang, Z. Ou, L. Tao, L. Tao, Z. Zheng, J. Liu, Y. Yang, A. Wei, Y. Zhao, Large-area ReS2 monolayer films on flexible substrate for SERS based molecular sensing with strong fluorescence quenching, Applied Surface Science, 542(2021), 148757.
    [104] K. Ge, Y. Hu, G. Li, Recent Progress on Solid Substrates for Surface-Enhanced Raman Spectroscopy Analysis, Biosensors, 12(2022), 941.
    [105] P. A. Mosier-Boss, Review of SERS Substrates for Chemical Sensing, Nanomaterials, 7(2017), 142.
    [106] D. Lin, T. Qin, Y. Wang, X. Sun, L.Chen, Graphene Oxide Wrapped SERS Tags: Multifunctional Platforms toward Optical Labeling, Photothermal Ablation of Bacteria, and the Monitoring of Killing Effect, ACS Applied Materials & Interfaces, 6(2014), 1320-1329.
    [107] S. Huh, J. Park, Y. S. Kim, K. S. Kim, B. H. Hong, J.-M. Nam, UV/Ozone-Oxidized Large-Scale Graphene Platform with Large Chemical Enhancement in Surface-Enhanced Raman Scattering, ACS Nano, 5(2011), 9799-9806.
    [108] C. Muehlethaler, C. R. Considine, V. Menon, W.-C. Lin, Y.-H. Lee, J. R. Lombardi, Ultrahigh Raman Enhancement on Monolayer MoS2, ACS Photonics, 3(2016), 1164-1169.
    [109] X. Yu, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang, J. G. Hou, Tuning Chemical Enhancement of SERS by Controlling the Chemical Reduction of Graphene Oxide Nanosheets, ACS Nano, 5(2011), 952-958.
    [110] L. Tao, K. Chen, Z. Chen, C. Cong, C. Qiu, J. Chen, X. Wang, H. Chen, T. Yu, W. Xie, S. Deng, J.-B. Xu, 1T′ Transition Metal Telluride Atomic Layers for Plasmon-Free SERS at Femtomolar Levels, Journal of the American Chemical Society, 140(2018), 8696-8704.
    [111] X. Zhang, J. Zou, X. Zhang, A. Wei, N. luo, Z. Liu, J. Xu, Y. Zhao, Controllable growth of 2D ReS2 flakes and their surface Raman enhancement effects, Journal of Alloys and Compounds, 963(2023), 171207.
    [112] H. Qiua, M. Wanga, L. Zhangb, M. Caoc, Y. Jia, S. Koua, J. Doua, X. Suna, Z. Yanga, Wrinkled 2H-phase MoS2 sheet decorated with graphene-microflowers for ultrasensitive molecular sensing by plasmon-free SERS enhancement, Sensors and Actuators B: Chemical, 320(2020), 128445.
    [113] S. A. Ghopry, M. A. Alamri, R. Goul, R. Sakidja, J. Z. Wu, Extraordinary Sensitivity of Surface-Enhanced Raman Spectroscopy of Molecules on MoS2 (WS2) Nanodomes/ Graphene van der Waals Heterostructure Substrates, 7(2019), 1801249.

    QR CODE