研究生: |
曾子倪 TZU-NI TSENG |
---|---|
論文名稱: |
利用 HoloLens 2 探討複雜組裝任務下之用戶體驗 Using HoloLens 2 to explore user experience under complex assembly tasks |
指導教授: |
林久翔
Chiuhsiang Joe Lin |
口試委員: |
馮文陽
許聿靈 |
學位類別: |
碩士 Master |
系所名稱: |
管理學院 - 工業管理系 Department of Industrial Management |
論文出版年: | 2024 |
畢業學年度: | 113 |
語文別: | 中文 |
論文頁數: | 60 |
中文關鍵詞: | HoloLens 2 、複雜組裝任務 、主觀問卷 、生理訊號 |
外文關鍵詞: | HoloLens 2, complex assembly tasks, subjective questionnaires, physiological signals |
相關次數: | 點閱:984 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技的進步,製造業中的工廠正積極追求智慧化和自動化,這一趨勢推動了 MR 設 備等新技術的引入。本研究旨在比較 2D 裝置-觸控螢幕及 3D 裝置- Microsoft HoloLens 2 在複雜組裝任務中的績效指標、主觀問卷、生理訊號以及使用者體驗,並探討這兩種 裝置對於工廠智慧化的應用潛力。
本研究以應用裝置(2D 裝置-觸控螢幕及 3D 裝置- Microsoft HoloLens 2)為因子,應變項 包括績效指標(名目完成率、正確完成率、已組裝組零件錯誤率、總零件錯誤率)、主觀 問卷(NASA-TLX、SUS、SAM 量表)以及客觀生理數據(腦波、心率、心率變異性)。研 究通過穿戴式設備收集生理數據,並在實驗後進行主觀問卷和訪談以獲取受試者的主觀 反饋。
研究結果顯示,使用 2D 裝置-觸控螢幕的名目完成率(M=0.430,SD=0.143)顯著高於 3D 裝置- HoloLens 2(M=0.397,SD=0.128),但在正確完成率上兩者無顯著差異。相較之下, HoloLens 2 在已組裝組零件錯誤率(M=0.090,SD=0.069)和總零件錯誤率(M=0.030, SD=0.210)上表現更佳。在主觀問卷中,HoloLens 2 在 SAM 量表的喚醒度得分顯著高於 觸控螢幕,顯示其能提升使用者的注意力和警覺性。而在生理數據方面,腦波的 Low Gamma 波接近顯著,表明使用觸控螢幕的認知壓力較大。
本研究結果表明,2D 裝置-觸控螢幕在提升組裝效率上具有優勢,而 3D 裝置- HoloLens
2 則在降低錯誤率和提升使用者注意力方面更具潛力。這些發現可應用於工廠智慧化改 造中,根據具體需求選擇合適的技術,以達到最佳的生產效率和品質控制。此外,建議 未來研究應考慮延長任務時長並邀請不同經驗程度的受試者參與,以獲取更全面的數據。
With the advancement of science and technology, factories in the manufacturing industry are actively pursuing intelligence and automation. This trend has promoted the introduction of new technologies such as MR equipment. This study aims to compare the performance indicators, subjective questionnaires, physiological signals and user experience of 2D devices - touch screens and 3D devices - Microsoft HoloLens 2 in complex assembly tasks, and explore the application potential of these two devices for factory intelligence.
This study uses the application device (2D device - touch screen and 3D device - Microsoft HoloLens 2) as the factor, and the contingency items include performance indicators (project completion rate, correct completion rate, assembled group part error rate, total part error rate), Subjective questionnaires (NASA-TLX, SUS, SAM scale) and objective physiological data (brain waves, heart rate, heart rate variability). The study collected physiological data through wearable devices, and conducted subjective questionnaires and interviews after the experiment to obtain subjective feedback from the subjects.
The research results show that the project completion rate using 2D device - touch screen (M=0.430, SD=0.143) is significantly higher than that of 3D device - HoloLens 2 (M=0.397, SD=0.128), but the correct completion rate of both No significant difference. In comparison, HoloLens 2 performed better in the assembled group part error rate (M=0.090, SD=0.069) and total part error rate (M=0.030, SD=0.210). In the subjective questionnaire, the arousal score of HoloLens 2 on the SAM scale was significantly higher than that of the touch screen, showing that it can improve the user's attention and alertness. In terms of physiological data, the Low Gamma waves of the brain waves are close to being significant, indicating that the cognitive pressure of using touch screens is greater.
The results of this study show that the 2D device - touch screen has advantages in improving assembly efficiency, while the 3D device - HoloLens 2 has greater potential in reducing error rates and improving user attention. These findings can be applied in the smart transformation of factories to select appropriate technologies based on specific needs to achieve optimal production efficiency and quality control. In addition, it is recommended that future research should consider extending the task duration and inviting subjects with different levels of experience to participate to obtain more comprehensive data.
Al Janabi, H. F., Aydin, A., Palaneer, S., Macchione, N., Al-Jabir, A., Khan, M. S., Dasgupta, P., & Ahmed, K. (2020). Effectiveness of the HoloLens mixed-reality headset in minimally invasive surgery: a simulation-based feasibility study. Surgical Endoscopy, 34, 1143-1149.
Arellano, J. H., Martínez, J. C., Pérez, J. S., & Alcaraz, J. (2015). Relationship between workload and fatigue among Mexican assembly operators. International Journal of Physical Medicine & Rehabilitation, 3(06), 1-6.
Atici-Ulusu, H., Ikiz, Y. D., Taskapilioglu, O., & Gunduz, T. (2021). Effects of augmented reality glasses on the cognitive load of assembly operators in the automotive industry. International Journal of Computer Integrated Manufacturing, 34(5), 487-499.
Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., & MacIntyre, B. (2001). Recent advances in augmented reality. IEEE computer graphics and applications, 21(6), 34-47.
Azuma, R. T. (1997). A survey of augmented reality. Presence: teleoperators & virtual environments, 6(4), 355-385.
Baroroh, D. K., Chu, C.-H., & Wang, L. (2021). Systematic literature review on augmented reality in smart manufacturing: Collaboration between human and computational intelligence. Journal of manufacturing systems, 61, 696-711.
Betella, A., & Verschure, P. F. (2016). The affective slider: A digital self-assessment scale for the measurement of human emotions. PloS one, 11(2), e0148037.
Biondi, F. N., Cacanindin, A., Douglas, C., & Cort, J. (2021). Overloaded and at work: Investigating the effect of cognitive workload on assembly task performance. Human factors, 63(5), 813-820.
Bläsing, D., & Bornewasser, M. (2021). Influence of increasing task complexity and use of informational assistance systems on mental workload. Brain Sciences, 11(1), 102.
Blattgerste, J., Strenge, B., Renner, P., Pfeiffer, T., & Essig, K. (2017). Comparing conventional and augmented reality instructions for manual assembly tasks. Proceedings of the 10th international conference on pervasive technologies related to assistive environments,
Bradley, M. M., & Lang, P. J. (1994). Measuring emotion: the self-assessment manikin and the semantic differential. Journal of behavior therapy and experimental psychiatry, 25(1), 49-59.
Brice, D., Rafferty, K., & McLoone, S. (2020a). AugmenTech: The usability evaluation of an AR system for maintenance in industry. Augmented Reality, Virtual Reality, and Computer Graphics: 7th International Conference, AVR 2020, Lecce, Italy, September 7–10, 2020, Proceedings, Part II 7,
Brice, D., Rafferty, K., & McLoone, S. (2020b). Usability of an Input Modality for AR. Augmented Reality, Virtual Reality, and Computer Graphics: 7th International Conference, AVR 2020, Lecce, Italy, September 7–10, 2020, Proceedings, Part I 7,
Brooke, J. (1996). SUS-A quick and dirty usability scale. Usability evaluation in industry, 189(194), 4-7.
Büttner, S., Prilla, M., & Röcker, C. (2020). Augmented reality training for industrial assembly work-are projection-based ar assistive systems an appropriate tool for assembly training? Proceedings of the 2020 CHI conference on human factors in computing systems,
Chu, C.-H., Liao, C.-J., & Lin, S.-C. (2020). Comparing augmented reality-assisted assembly functions—a case study on Dougong structure. Applied Sciences, 10(10), 3383.
Daling, L. M., & Schlittmeier, S. J. (2024). Effects of augmented reality-, virtual reality-, and mixed reality–based training on objective performance measures and subjective evaluations in manual assembly tasks: a scoping review. Human factors, 66(2), 589-626.
Deshpande, A., & Kim, I. (2018). The effects of augmented reality on improving spatial problem solving for object assembly. Advanced Engineering Informatics, 38, 760-775.
Dorloh, H., Li, K.-W., & Khaday, S. (2023). Presenting Job Instructions Using an Augmented Reality Device, a Printed Manual, and a Video Display for Assembly and Disassembly Tasks: What Are the Differences? Applied Sciences, 13(4), 2186.
Falck, A.-C., Örtengren, R., & Rosenqvist, M. (2014). Assembly failures and action cost in relation to complexity level and assembly ergonomics in manual assembly (part 2). International Journal of Industrial Ergonomics, 44(3), 455-459.
Falck, A.-C., & Rosenqvist, M. (2012). What are the obstacles and needs of proactive ergonomics measures at early product development stages?–An interview study in five Swedish companies. International Journal of Industrial Ergonomics, 42(5), 406-415.
Fang, W., Zhang, T., Chen, L., & Hu, H. (2023). A survey on HoloLens AR in support of human-centric intelligent manufacturing. Journal of Intelligent Manufacturing, 1-25.
Fiorentino, M., Uva, A. E., Gattullo, M., Debernardis, S., & Monno, G. (2014). Augmented reality on large screen for interactive maintenance instructions. Computers in Industry, 65(2), 270-278.
Funk, M., Kosch, T., & Schmidt, A. (2016). Interactive worker assistance: comparing the effects of in-situ projection, head-mounted displays, tablet, and paper instructions. Proceedings of the 2016 ACM international joint conference on pervasive and ubiquitous computing,
Ganlin, Z., Pingfa, F., Jianfu, Z., Dingwen, Y., & Zhijun, W. (2021). Information integration and instruction authoring of augmented assembly systems. International Journal of Intelligent Systems, 36(9), 5028-5050.
Gervasi, R., Capponi, M., Mastrogiacomo, L., & Franceschini, F. (2024). Analyzing psychophysical state and cognitive performance in human-robot collaboration for repetitive assembly processes. Production Engineering, 18(1), 19-33.
Gervasi, R., Mastrogiacomo, L., & Franceschini, F. (2020). A conceptual framework to evaluate human-robot collaboration. The International Journal of Advanced Manufacturing Technology, 108, 841-865.
Hanna, M. G., Ahmed, I., Nine, J., Prajapati, S., & Pantanowitz, L. (2018). Augmented reality technology using Microsoft HoloLens in anatomic pathology. Archives of pathology & laboratory medicine, 142(5), 638-644.
Harmony, T. (2013). The functional significance of delta oscillations in cognitive processing. Frontiers in integrative neuroscience, 7, 83.
Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In Advances in psychology (Vol. 52, pp. 139-183). Elsevier.
Holzinger, A., Carrington, A., & Müller, H. (2020). Measuring the quality of explanations: the system causability scale (SCS) comparing human and machine explanations. KI-Künstliche Intelligenz, 34(2), 193-198.
Hoonakker, P., Carayon, P., Gurses, A. P., Brown, R., Khunlertkit, A., McGuire, K., & Walker, J. M. (2011). Measuring workload of ICU nurses with a questionnaire survey: the NASA Task Load Index (TLX). IIE transactions on healthcare systems engineering, 1(2), 131-143.
Hoover, M., Miller, J., Gilbert, S., & Winer, E. (2020). Measuring the performance impact of using the microsoft hololens 1 to provide guided assembly work instructions. Journal of Computing and Information Science in Engineering, 20(6), 061001.
Hoyer, W. D., Kroschke, M., Schmitt, B., Kraume, K., & Shankar, V. (2020). Transforming the customer experience through new technologies. Journal of interactive marketing, 51(1), 57-71.
Hynes, E., Flynn, R., Lee, B., & Murray, N. (2019). A quality of experience evaluation comparing augmented reality and paper based instruction for complex task assistance. 2019 IEEE 21st international workshop on multimedia signal processing (MMSP),
Hynes, E., Flynn, R., Lee, B., & Murray, N. (2023). Towards a symmetrical definition of QoE: An Evaluation of Emotion Semantics in Augmented Reality Training. 2023 15th International Conference on Quality of Multimedia Experience (QoMEX),
Jebelli, H., Hwang, S., & Lee, S. (2018). EEG-based workers' stress recognition at construction sites. Automation in construction, 93, 315-324.
Kim, Y.-S. (1999). A system complexity approach for the integration of product development and production system design Massachusetts Institute of Technology].
Lang, P. (1980). Behavioral treatment and bio-behavioral assessment: Computer applications. Technology in mental health care delivery systems, 119-137.
Laun, M., Czech, C., Hartmann, U., Terschüren, C., Harth, V., Karamanidis, K., & Friemert, D. (2022). The acceptance of smart glasses used as side-by-side instructions for complex assembly tasks is highly dependent on the device model. International Journal of Industrial Ergonomics, 90, 103316.
Li, C., Li, P., Zhang, Y., Li, N., Si, Y., Li, F., Cao, Z., Chen, H., Chen, B., & Yao, D. (2023). Effective emotion recognition by learning discriminative graph topologies in EEG brain networks. IEEE Transactions on Neural Networks and Learning Systems.
Lin, G., Panigrahi, T., Womack, J., Ponda, D. J., Kotipalli, P., & Starner, T. (2021). Comparing order picking guidance with Microsoft hololens, magic leap, google glass xe and paper. Proceedings of the 22nd international workshop on mobile computing systems and applications,
Martin-Vega, L. A., Brown, H. K., Shaw, W. H., & Sanders, T. J. (1995). Industrial perspective on research needs and opportunities in manufacturing assembly. Journal of manufacturing systems, 14(1), 45-58.
McDuff, D., Hurter, C., & Gonzalez-Franco, M. (2017). Pulse and vital sign measurement in mixed reality using a HoloLens. Proceedings of the 23rd ACM Symposium on Virtual Reality Software and Technology,
Milgram, P., & Kishino, F. (1994). A taxonomy of mixed reality visual displays. IEICE TRANSACTIONS on Information and Systems, 77(12), 1321-1329.
Miller, J., Hoover, M., & Winer, E. (2020). Mitigation of the Microsoft HoloLens’ hardware limitations for a controlled product assembly process. The International Journal of Advanced Manufacturing Technology, 109(5), 1741-1754.
Mourtzis, D., Siatras, V., & Zogopoulos, V. (2020). Augmented reality visualization of production scheduling and monitoring. Procedia Cirp, 88, 151-156.
Nof, S. Y., Wilhelm, W. E., Warnecke, H.-J., Nof, S. Y., Wilhelm, W. E., & Warnecke, H.-J. (1997). Introduction and fundamental concepts of assembly. Industrial Assembly, 1-44.
O’Keeffe, V., Jang, R., Manning, K., Trott, R., Howard, S., Hordacre, A.-L., & Spoehr, J. (2024). Forming a view: a human factors case study of augmented reality collaboration in assembly. Ergonomics, 1-17.
Oehme, O., Schmidt, L., & Luczak, H. (2003). Comparison between the strain indicator HRV of a head-based virtual retinal display and LC-head mounted displays for augmented reality. International Journal of Occupational Safety and Ergonomics, 9(4), 419-430.
Qin, Y., Bloomquist, E., Bulbul, T., Gabbard, J., & Tanous, K. (2021). Impact of information display on worker performance for wood frame wall assembly using AR HMD under different task conditions. Advanced Engineering Informatics, 50, 101423.
Qin, Y., & Bulbul, T. (2023). An EEG-based mental workload evaluation for AR head-mounted display use in construction assembly tasks. Journal of Construction Engineering and Management, 149(9), 04023088.
Radkowski, R., & Ingebrand, J. (2017). HoloLens for assembly assistance-a focus group report. Virtual, Augmented and Mixed Reality: 9th International Conference, VAMR 2017, Held as Part of HCI International 2017, Vancouver, BC, Canada, July 9-14, 2017, Proceedings 9,
Riedel, A., Gerlach, J., Dietsch, M., Engelmann, F., Brehm, N., & Pfeifroth, T. (2023). Evaluating Augmented Reality, Deep Learning and Paper-Based Assistance Systems in Industrial Manual Assembly. IFIP International Conference on Advances in Production Management Systems,
Samy, S. N., & ElMaraghy, H. (2010). A model for measuring products assembly complexity. International Journal of Computer Integrated Manufacturing, 23(11), 1015-1027.
Skarbez, R., Smith, M., & Whitton, M. C. (2021). Revisiting Milgram and Kishino's reality-virtuality continuum. Frontiers in Virtual Reality, 2, 647997.
Speicher, M., Hall, B. D., & Nebeling, M. (2019). What is mixed reality? Proceedings of the 2019 CHI conference on human factors in computing systems,
Sutarto, A. P., Khairai, K. M., & Wahab, M. N. A. (2020). Assessment of stress among assembly-line workers: correlation between subjective and objective physiological measures. International Journal of Human Factors and Ergonomics, 7(3), 207-224.
Tang, A., Owen, C., Biocca, F., & Mou, W. (2003). Comparative effectiveness of augmented reality in object assembly. Proceedings of the SIGCHI conference on Human factors in computing systems,
Tarvainen, M. P., Niskanen, J.-P., Lipponen, J. A., Ranta-Aho, P. O., & Karjalainen, P. A. (2014). Kubios HRV–heart rate variability analysis software. Computer methods and programs in biomedicine, 113(1), 210-220.
Theis, S., Mertens, A., Wille, M., Rasche, P., Alexander, T., & Schlick, C. (2015). Effects of data glasses on human workload and performance during assembly and disassembly tasks. Proceedings 19th triennial congress of the IEA,
Thomas, P. C., & David, W. (1992). Augmented reality: An application of heads-up display technology to manual manufacturing processes. Hawaii international conference on system sciences,
Vidal-Balea, A., Blanco-Novoa, O., Fraga-Lamas, P., Vilar-Montesinos, M., & Fernández-Caramés, T. M. (2020). Creating collaborative augmented reality experiences for industry 4.0 training and assistance applications: Performance evaluation in the shipyard of the future. Applied Sciences, 10(24), 9073.
Vorraber, W., Gasser, J., Webb, H., Neubacher, D., & Url, P. (2020). Assessing augmented reality in production: remote-assisted maintenance with HoloLens. Procedia Cirp, 88, 139-144.
Wang, X., Ong, S. K., & Nee, A. Y. (2016). A comprehensive survey of augmented reality assembly research. Advances in Manufacturing, 4, 1-22.
Wang, Z., Bai, X., Zhang, S., Billinghurst, M., He, W., Wang, P., Lan, W., Min, H., & Chen, Y. (2022). A comprehensive review of augmented reality-based instruction in manual assembly, training and repair. Robotics and Computer-Integrated Manufacturing, 78, 102407.
Werrlich, S., Lorber, C., Nguyen, P.-A., Yanez, C. E. F., & Notni, G. (2018). Assembly training: comparing the effects of head-mounted displays and face-to-face training. Virtual, Augmented and Mixed Reality: Interaction, Navigation, Visualization, Embodiment, and Simulation: 10th International Conference, VAMR 2018, Held as Part of HCI International 2018, Las Vegas, NV, USA, July 15-20, 2018, Proceedings, Part I 10,
Werrlich, S., Nguyen, P.-A., & Notni, G. (2018). Evaluating the training transfer of Head-Mounted Display based training for assembly tasks. Proceedings of the 11th PErvasive Technologies Related to Assistive Environments Conference,
Wieland, J., Garcia, R. C. H., Reiterer, H., & Feuchtner, T. (2022). Arrow, bézier curve, or halos?–Comparing 3D out-of-view object visualization techniques for handheld augmented reality. 2022 IEEE International Symposium on Mixed and Augmented Reality (ISMAR),
Wille, M., Grauel, B., & Adolph, L. (2013). Strain caused by head mounted displays. Proceedings of the Human Factors and Ergonomics Society Europe, 267-277.
Wilson, J. R., & Sharples, S. (2015). Evaluation of human work. CRC press.
Wind, J., & Rangaswamy, A. (2001). Customerization: The next revolution in mass customization. Journal of interactive marketing, 15(1), 13-32.
Wu, M., Dai, S.-L., & Yang, C. (2020). Mixed reality enhanced user interactive path planning for omnidirectional mobile robot. Applied Sciences, 10(3), 1135.
Xu, X., Lu, Y., Vogel-Heuser, B., & Wang, L. (2021). Industry 4.0 and Industry 5.0—Inception, conception and perception. Journal of manufacturing systems, 61, 530-535.
Zhang, L., Chen, S., Dong, H., & El Saddik, A. (2018). Visualizing toronto city data with hololens: Using augmented reality for a city model. IEEE Consumer Electronics Magazine, 7(3), 73-80.