簡易檢索 / 詳目顯示

研究生: 胡羽涵
Yu-Han Hu
論文名稱: 添加生質灰於高分子改質瀝青混凝土之績效分析
Performance Evaluation of Biomass Ashes Used as Fillers for Polymer Modified Asphalt Mixtures
指導教授: 廖敏志
Min-Chih Liao
口試委員: 陳建旭
Jian-Shiuh Chen
蘇育民
Yu-Min Su
陳君弢
Chun-Tao Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 137
中文關鍵詞: 木灰稻殼灰生質灰高溫間接張力強度試驗間接張力車轍試驗
外文關鍵詞: Wood Ash, Rice Husk Ash, Biomass Ashes, Indirect Tensile Test at High Temperature, Indirect Tensile Rutting tests
相關次數: 點閱:174下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

全球持續暖化導致氣候變遷,使得近年歐美國家及澳洲之夏季森林野火災害愈趨頻繁,災後的廢棄木灰(WA)對環境造成汙染;另外,臺灣每年生產大量稻殼,導致大量廢棄稻殼灰(RHA)棄置與環境問題;因此,若能加以應用生質灰(Biomass Ash)於鋪面材料,可達到環保、維護環境的目的,亦可成為促進循環經濟的一環,然而,木灰、稻殼灰在瀝青混凝土中之工程應用資訊則相對匱乏,且大多應用於替代填料,且尚未針對其對瀝青改質之效果進行相對應之鋪面績效評估。本研究將木灰、稻殼灰分兩種應用方式:一為瀝青改質劑(2%、4%、6%)之濕式製程,二為取代填料(50%、100%)之乾式製程,先將生質灰改質瀝青與基底瀝青做基本物性分析比對,再進行流變性能試驗,取得車轍性能、疲勞性能;再藉由瀝青混合料之馬歇爾試驗、間接張力開裂試驗(IDEAL-CT)、間接張力強度試驗(IDT)、水侵害試驗、高溫間接張力強度試驗(HT-IDT)以及間接張力車轍試驗(IDEAL-RT),評估木灰、稻殼灰作為瀝青改質劑或填料之效益。接著分析HT-IDT與IDEAL-RT試驗相關性,並評估瀝青流變性能參數與瀝青混凝土之HT-IDT和IDEAL-RT參數關係。根據試驗結果顯示,採濕式製程時,木灰作為改質劑相較於稻殼灰使膠泥較硬質、韌性較佳流動性高,而稻殼灰則工作性較佳,生質灰之添加量增加皆使膠泥韌性降低,但韌性之最大抗拉強度提高。濕式製程中,木灰與稻殼灰比較,木灰隨著添加量而提升而穩定值和RT index隨之提升,在HT-IDT最佳添加量為4.2%、在IDEAL-CT最佳添加量為3.2%,稻殼灰則隨添加量提高IDT值,在HT-IDT最佳添加量為3.2%、在IDEAL-CT最佳添加量為2.7%;在乾式製程中,木灰與稻殼灰比較,木灰提高提高G*/sinδ、稻殼灰線性振幅掃描性能較佳。生質灰採乾式製程時,生質灰取代填料量在50%,使穩定值高於對照組,木灰表現較稻殼灰佳,木灰取代填料會隨著取代量增加抗開裂指數上升,稻殼灰作為填料有助於提升瀝青混凝土之抗水侵害能力。製程比較方面,在馬歇爾試驗、HT-IDT和IDEAL-RT,濕式製程整體表現優於乾式製程;而在IDEAL-CT與水侵害試驗,乾式製程大多表現優於濕式製程,且HT-IDT與IDEAL-RT對比,兩者試驗相關性高;對於膠泥流變性能與HT-IDT與IDEAL-RT比較,在乾式製程中,隨著|G*|/sinδ提升,HT-IDT值與RT index,也隨之提升。


The escalating global warming has triggered significant climate changes, leading to a surge in devastating forest wildfires during summer seasons across Europe, America, and Australia. These fires result in the accumulation of waste wood ash (WA). Besides, substantial amounts of rice husk were produced from a major crop in Taiwan, leading to significant quantities of rice husk ash (RHA). WA and RHA are biomass ashes that severely threaten the environment. Using biomass ash in pavement materials has emerged as an environmentally friendly approach to environmental preservation and advancing circular economy initiatives. This study looks at WA and RHA as asphalt modifiers in a wet process at 2%, 4%, and 6% concentrations and as filler replacements in a dry process at 50% and 100% replacement levels. Over modified asphalt, the fundamental properties of the asphalt binder were investigated, and rutting and fatigue tests were performed to see how well the asphalt held up. WA and RHA were tested as filler replacements in asphalt concrete by using Marshall stability, indirect tensile tests (IDT), moisture damage, indirect tensile cracking tests (IDEAL-CT), indirect tensile cracking tests at high temperatures (HT-IDT), and indirect tensile rutting tests (IDEAL-RT). In the wet process, WA, as a modifier, makes the binder stiffer with enhanced toughness and greater flowability than RHA, demonstrating superior workability. When WA and RHA-modified asphalt binders were used in asphalt concrete, the stability value and RT index of wood ash increased with increasing dosage, with optimal addition content of 4.2% for HT-IDT and 3.2% for IDEAL-CT. Rice husk ash, on the other hand, exhibits an increase in IDT value with increasing dosage, with optimal content of 3.2% for HT-IDT and 2.7% for IDEAL-CT. When WA and RHA are used as fillers in asphalt concrete, replacing 50% of the material gives stability values higher than those of the control group, with WA exhibiting superior performance compared to RHA. Moreover, as the WA replacement increases, the cracking resistance index rises, whereas RHA as a filler contributes to improved water resistance in asphalt concrete. In terms of process comparison, the wet process generally outperforms the dry process in Marshall tests, HT-IDT, and IDEAL-RT, while the dry process predominantly outperforms the wet process in IDEAL-CT and moisture susceptibility tests. A high correlation is observed between the HT-IDT and IDEAL-RT tests. Regarding the comparison between binder rheological properties and HT-IDT and IDEAL-RT, an increase in |G*|/sinδ in the dry process leads to a simultaneous rise in HT-IDT values and RT index.

摘要 I ABSTRACT III 致謝 V 表目錄 X 圖目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 研究目的 3 1.4研究範圍 3 第二章 文獻回顧 4 2.1 SBS改質瀝青 4 2.2木灰 5 2.2.1木灰性質分析 5 2.2.2木灰應用 7 2.3稻殼灰 8 2.3.1稻殼灰物質分析 8 2.3.2稻殼灰應用 10 2.4 高溫間接張力強度試驗 11 2.4.1 三軸試驗之莫爾─庫侖強度破壞參數評估瀝青混凝土車轍行為 13 2.4.2試驗條件 15 2.5 間接張力車轍試驗 17 2.5.1 理論分析 18 2.5.2試驗條件 23 第三章 研究計畫 24 3.1 試驗範圍 24 3.2 研究流程 24 3.3 試驗材料 26 3.3.1天然粒料 26 3.3.2 瀝青膠泥 26 3.3.3填料 27 3.3.4木灰 27 3.3.5稻殼灰 28 3.3.6試驗編號 29 3.4 瀝青膠泥試驗 33 3.4.1 軟化點試驗 33 3.4.2 針入度試驗 34 3.4.3瀝青膠泥比重試驗 35 3.4.4黏滯度試驗 36 3.4.5木灰、稻殼灰改質瀝青膠泥 37 3.4.6韌性試驗 38 3.4.7頻率掃描試驗 38 3.4.8線性振幅掃描試驗 39 3.5 粒料試驗方式 40 3.5.1 篩分析試驗 40 3.5.2 粗粒料破碎顆粒含量試驗 41 3.5.3 粗粒料扁平、細長或扁長顆粒含量試驗 43 3.5.4 粗粒料比重和吸水率試驗 44 3.5.5 細粒料比重和吸水率試驗 45 3.6填料試驗方式 47 3.6.1 比重試驗 47 3.6.2 X射線螢光分析法 47 3.7瀝青混凝土試驗方式 48 3.7.1 馬歇爾配比設計 48 3.7.2 最大理論比重試驗 50 3.7.3 馬歇爾試驗 51 3.7.4 間接張力強度試驗 53 3.7.5 高溫間接張力強度試驗 54 3.7.6 間接張力開裂試驗 55 3.7.7水侵害試驗 57 3.7.8間接張力車轍試驗 58 第四章 結果與分析 60 4.1粒料性質與級配 60 4.2填充料性質 61 4.3瀝青與生質灰複合改質瀝青物性分析 64 4.3.1 針入度試驗 64 4.3.2軟化點試驗 65 4.3.3黏滯度試驗 66 4.3.4韌性試驗 67 4.4 流變試驗 71 4.4.1 流變性能分析 71 4.4.2 線性振幅掃描 75 4.5生質灰添加量對瀝青混凝土之績效試驗 77 4.5.1馬歇爾配比設計 77 4.5.2馬歇爾穩定值試驗 81 4.5.4間接張力強度試驗 86 4.5.5高溫間接張力強度試驗 89 4.5.6間接張力開裂試驗 92 4.5.5水侵害試驗 97 4.5.7間接張力車轍試驗 100 4.6績效試驗綜合分析比較 103 4.6.1抗開裂指數與馬歇爾穩定值 103 4.6.2抗開裂指數與間接張力 104 4.6.3抗開裂指數與高溫間接張力 105 4.6.4抗開裂指數與間接張力車轍試驗 106 4.6.5抗開裂指數與線性振幅掃描 107 4.6.6高溫間接張力與間接張力車轍試驗 109 4.6.7流變性能與高溫間接張力 111 4.6.8流變性能與間接張力車轍試驗 112 第五章 結論 114 5.1結論 114 5.2建議 115 參考文獻 116

Abdelmagid, A. & Feng, C. (2019). Laboratory evaluation of the effects of short-term aging on high temperature performance of asphalt binder modified with crumb rubber and rice husk ash. Petroleum Science and Technology, 37(13), 1557-1565.
Adam, F., Appaturi, J. N. & Iqbal, A. (2012). The utilization of rice husk silica as a catalyst: Review and recent progress. Catalysis Today, 190(1), 2-14.
Airey, G. (2004). Styrene butadiene styrene polymer modification of road bitumens. Journal of Materials Science, 39, 951-959.
Aprianti, E., Shafigh, P., Bahri, S. & Farahani, J. N. (2015). Supplementary cementitious materials origin from agricultural wastes–A review. Construction and Building Materials, 74, 176-187.
Arabani, M. & Tahami, S. A. (2017). Assessment of mechanical properties of rice husk ash modified asphalt mixture. Construction and Building Materials, 149, 350-358.
Bennert, T., Haas, E. & Wass, E. (2018). Indirect tensile test (IDT) to determine asphalt mixture performance indicators during quality control testing in New Jersey. Transportation research record, 2672(28), 394-403.IDT
Bi, Y. & Jakarni, F. (2019). Evaluating properties of wood ash modified asphalt mixtures. IOP Conference Series: Materials Science and Engineering,
Boura & Hesami (2020). Laboratory evaluation of the performance of asphalt mixtures containing biomass fillers. Road Materials and Pavement Design, 21.7: 2040-2053.
Boz, I., Coffey, G. P., Habbouche, J., Diefenderfer, S. D. & Ozbulut, O. E. (2022). A critical review of monotonic loading tests to evaluate rutting potential of asphalt mixtures. Construction and Building Materials, 335.
Boz, I., Habbouche, J., Diefenderfer, S. D., Coffey, G. P., Ozbulut, O. E. & Seitllari, A. (2023). Simple and practical tests for rutting evaluation of asphalt mixtures in the balanced mix design process. Virgina Transportation Research Council, Final Report VTRC 23-R11, 39.
Cavaliere, M., Da Via, M. & Diani, E. (1996). Dynamic-mechanical characterization of binder and asphalt concrete. Eurasphalt & Eurobitume Congress, Strasbourg, 7-10 may 1996. Volume 2. Paper E&E. 4.227,
Chen, J.-S. & Huang, C. (2007). Fundamental characterization of SBS‐modified asphalt mixed with sulfur. Journal of Applied Polymer Science, 103(5), 2817-2825.
Chowdhury, S., Maniar, A. & Suganya, O. (2015). Strength development in concrete with wood ash blended cement and use of soft computing models to predict strength parameters. Journal of Advanced Research, 6(6), 907-913.
Christensen, D., Bonaquist, R., Anderson, D. & Gokhale, S. (2004). Transportation Research Circular EC068: Indirect Tension Strength as a Simple Performance Test. New Simple Performance Tests for Asphalt Mixtures. Transportation Research Board of the National Academies, Washington, DC, 44-57.
Da Luz Garcia, M. & Sousa-Coutinho, J. (2013). Strength and durability of cement with forest waste bottom ash. Construction and Building Materials, 41, 897-910.
Demeyer, A., Nkana, J. V. & Verloo, M. (2001). Characteristics of wood ash and influence on soil properties and nutrient uptake: an overview. Bioresource technology, 77(3), 287-295.
Deshmukh, P., Bhatt, J., Peshwe, D. & Pathak, S. (2012). Determination of silica activity index and XRD, SEM and EDS studies of amorphous SiO 2 extracted from rice husk ash. Transactions of the Indian Institute of Metals, 65, 63-70.
Dong, F., Zhao, W., Zhang, Y., Wei, J., Fan, W., Yu, Y. & Wang, Z. (2014). Influence of SBS and asphalt on SBS dispersion and the performance of modified asphalt. Construction and Building Materials, 62, 1-7.
Etiegni, L. & Campbell, A. (1991). Physical and chemical characteristics of wood ash. Bioresource technology, 37(2), 173-178.
Gokhale, S., Anderson, D., Christensen, D. & Bonaquist, R. (2005). Simplified protocol for triaxial testing of hot mix asphalt concrete.
Gorkem, C. & Sengoz, B. (2009). Predicting stripping and moisture induced damage of asphalt concrete prepared with polymer modified bitumen and hydrated lime. Construction and Building Materials, 23(6), 2227-2236.
Kahl, J. S., Fernandez, I. J., Rustad, L. E. & Peckenham, J. (1996). Threshold application rates of wood ash to an acidic forest soil. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Vol. 25, No. 2, pp. 220-227.
Khodaii, A. & Mehrara, A. (2009). Evaluation of permanent deformation of unmodified and SBS modified asphalt mixtures using dynamic creep test. Construction and Building Materials, 23(7), 2586-2592.
Kumar, P., Chandra, S. & Bose, S. (2006). Strength characteristics of polymer modified mixes. The International Journal of Pavement Engineering, 7(1), 63-71.
Kurola, J. M., Arnold, M., Kontro, M. H., Talves, M. & Romantschuk, M. (2011). Wood ash for application in municipal biowaste composting. Bioresource technology, 102(8), 5214-5220.
Li, L., Huang, X., Han, D., Dong, M. & Zhu, D. (2015). Investigation of rutting behavior of asphalt pavement in long and steep section of mountainous highway with overloading. Construction and Building Materials, 93, 635-643.
Liu, Z., Han, Z., & Sha, A. (2019). Calorimetry of Cement Modified Emulsified Asphalt Incorporated with Rice Husk Ash. In Bituminous Mixtures and Pavements VII (pp. 20-26). CRC Press.
Luo, X., Hu, S., Zhou, F., Crockford, W. & Karki, P. (2022). Simple Asphalt Mixture Shear Rutting Test and Mechanical Analysis. Journal of Materials in Civil Engineering, 34(9).
Mehta, A. & Siddique, R. (2018). Sustainable geopolymer concrete using ground granulated blast furnace slag and rice husk ash: Strength and permeability properties. Journal of Cleaner Production, 205, 49-57.
Meroni, F., Flintsch, G., Habbouche, J., Diefenderfer, B. & Giustozzi, F. (2021). Three-level performance evaluation of high RAP asphalt surface mixes. Construction and Building Materials, 309, 125164.
Nair, D., Jagadish, K. & Fraaij, A. (2006). Reactive pozzolanas from rice husk ash: An alternative to cement for rural housing. Cement and Concrete Research, 36(6), 1062-1071.
Nguyen, P. & Pascal, K. (1997). Application of wood ash on forestlands: ecosystem responses and limitations. Proceeding of the Conference on Eastern Hardwoods, Resources, Technologies, and Markets, Forest Product Society.
Nisar, M., Zaidi, S., Fareed, A., Carvajal-Munoz, J. & Ahmed, I. (2022). Performance evaluation of Nano wood ashes in asphalt binder and mixture. International Journal of Pavement Engineering, 23(10), 3318-3332.
Pavía, S., Walker, R., Veale, P., & Wood, A. (2014). Impact of the properties and reactivity of rice husk ash on lime mortar properties. Journal of Materials in Civil Engineering, 26(9), 04014066.
Pellinen, T., Xiao, S., Carpenter, S., Masad, E., Di Benedetto, H. & Roque, R. (2005). Relationship between triaxial shear strength and indirect tensile strength of hot mix asphalt. Journal of the Association of the Asphalt Paving Technologists, 74, 347-379.
Piratheepan, J., Gnanendran, C. & Arulrajah, A. (2012). Determination of c and φ from IDT and unconfined compression testing and numerical analysis. Journal of 0Materials in Civil Engineering, 24(9), 1153-1164.
Pitman, R. (2006). Wood ash use in forestry–a review of the environmental impacts. Forestry: An International Journal of Forest Research, 79(5), 563-588.
Pode, R. (2016). Potential applications of rice husk ash waste from rice husk biomass power plant. Renewable and Sustainable Energy Reviews, 53, 1468-1485.
Ranaweera, J. (2017). Relationship between Asphalt Mixture Rut Resistance from Asphalt Mixture Performance Test and High-Temperature Indirect Tensile Strength Test. Asian Institute of Technology, Tailand, 30-31.
Rao, G., Sastry, A. & Rohatgi, P. (1989). Nature and reactivity of silica available in rice husk and its ashes. Bulletin of Materials Science, 12, 469-479.
Sarangi, M., Bhattacharyya, S. & Behera, R. (2009). Effect of temperature on morphology and phase transformations of nano-crystalline silica obtained from rice husk. Phase Transitions, 82(5), 377-386.
Sarangi, M., Nayak, P. & Tiwari, T. (2011). Effect of temperature on nano-crystalline silica and carbon composites obtained from rice-husk ash. Composites Part B: Engineering, 42(7), 1994-1998.
Sediawan, W., Sulistyo, H. & Hidayat, M. (2010). Pseudo-homogeneous kinetic of dilute-acid hydrolysis of rice husk for ethanol production: effect of sugar degradation. International Journal of Chemical and Molecular Engineering, 4(8), 518-523.
Siddique, R. (2012). Utilization of wood ash in concrete manufacturing. Resources, conservation and Recycling, 67, 27-33.
Singh, S., Pandey, A., Islam, S., Ransingchung, G. & Ravindranath, S. (2020). Significance of frequency in quantifying the deterioration in the properties of SBS modified binders and rutting performance. Construction and Building Materials, 262, 120872.
Someshwar, A. (1996). Wood and combination wood‐fired boiler ash characterization. Journal of Environmental Quality, 25(5), 962-972.
Stroeven, P., Dai Bui, D., & Sabuni, E. (1999). Ash of vegetable waste used for economic production of low to high strength hydraulic binders. Fuel, 78(2), 153-159.
Sudiyani, Y. (2012). Muryanto,“The potential of biomass waste feedstock for bioethanol production,”. Proceeding of the International Conference on Sustainable Energy Engineering and Application, Indonesia.
Transportation Research Circular (2007). Practical Approaches to Hot-Mix Asphalt Mix Design and Production Quality Control Testing, E-C124, pp. 67-69.
Wang, P., Dong, Z.-J., Tan, Y.-Q., & Liu, Z.-Y. (2015). Investigating the interactions of the saturate, aromatic, resin, and asphaltene four fractions in asphalt binders by molecular simulations. Energy & Fuels, 29(1), 112-121.
Zhou, F., Hu, S. & Newcomb, D. (2020). Development of a performance-related framework for production quality control with ideal cracking and rutting tests. Construction and Building Materials, 261, 120549.

無法下載圖示
全文公開日期 2024/08/01 (校外網路)
全文公開日期 2024/08/01 (國家圖書館:臺灣博碩士論文系統)
QR CODE