簡易檢索 / 詳目顯示

研究生: 葉柏園
Bo-yuan Ye
論文名稱: 音圈馬達之順應運動控制器設計與實作
Design and Realization of Compliant Motion Controllers for a Voice Coil Motor
指導教授: 黃安橋
An-chyau Huang
口試委員: 林紀穎
Chi-ying Lin
蔡宜昌
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 43
中文關鍵詞: 阻抗控制力量控制
外文關鍵詞: impedance control, force control
相關次數: 點閱:248下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

傳統阻抗控制器之設計需要知道精確的系統模型,並且要用力量感測器來回授接觸力。本文提出以函數近似法為基礎的適應阻抗控制器,與力量估測器,來處理系統中的未知項,並免除力感測器之安裝。本研究除了以數學驗證系統穩定度外,並以實驗來測試所提方法之有效性。其中特以力量感測器回授來比較力量估測器的凖確度。另外,針對位置控制與力量控制之切換問題,本文提出以函數近似法為基礎的適應阻抗控制器與PID力量伺服控制之組合來解決之,並以實驗來驗證其效能。


The traditional impedance controller design needs the information of the exact model, and its realization requires the feedback of the force sensor. This thesis proposes an adaptive impedance controller based on the function approximation technique, and designs a force estimator to perform the compliant motion control of a motor. This implies that the control strategy used in this thesis is force sensor free. In addition to rigorous mathematical proof of the closed-loop stability, an experimental setup is also built to justify the system performance. An actual force sensor is installed to verify the effectiveness of the force estimation performance as well. We also propose a method to enable the impedance controller to have force regulation ability which is also proved by experimental studies with satisfactory performance.

中文摘要 I Abstract II 誌謝 III 圖表索引 V 第一章 緒論 1 第二章 控制器設計 4 2.1 音圈馬達之數學模型[28] 5 2.2 PID force servo 控制 6 2.3 阻抗控制 7 2.3.1 情況一 7 2.3.2 情況二 9 2.3.3 情況三 11 2.3.4 情況四 12 第三章 實驗設備與實驗結果 14 3.1 實驗架構 14 3.2 實驗規劃 18 3.3 PID力量控制 18 3.4 阻抗控制 23 3.5 新切換控制 30 第四章 結論 38 參考文獻 39 作者簡介 43

[1] Asada, H. and Slotine, J-J. E., Robot Analysis and Control, J. Wiley, N.Y., 1986.
[2] Spong, M.W. and Vidyasagar, M., Robot Dynamics and Control, J.Wiley, N.Y., 1989.
[3] Hogan, N., “Impedance control: an approach to manipulation: Part1-theory, Part2-implementation, Part3-an approach to manipulation,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol.107, pp.1-24, 1985.
[4] Goldenberg, A. A., “Implementation of force and impedance control in robot manipulators,” Proceedings of IEEE International Conference on Robotics and Automation, Vol.3, pp.1626-1632, 1988.
[5] Kazerooni, H., Bausch, J. J. and Kramer “An approach to automated deburring by robot manipulators,“ ASME Journal of Dynamic Systems, Measurement, and Control, Vol.108, No.4, pp.354-359, 1986.
[6] Gonzalez, J. J. and Widmann, G. R., “A force commanded impedance control scheme for robots with hard nonlinearities,” IEEE Transactions on Control Systems Technology, Vol.3, No.4, pp.398-408, 1995.
[7] Anderson, R. J. and Spong, M.W., “Hybrid impedance control of robotic manipulators,” IEEE Transactions on Robotics and Automation, Vol.4, No.5, pp.549-556, 1988.
[8] Jung, S., Hsia, T. C., and Bonitz, R. G., “Force tracking impedance control of robot manipulators under unknown environment,” IEEE Transactions Control System Technology, Vol.12, No. 3, pp.474-483, May 2004.
[9] Park, J. H., “Impedance control for biped robot locomotion,” IEEE Transactions on Robotics and Automation, Vol.17, No.6, pp.870-882, 2001.
[10] Paul, R. and Shimano, B., “Compliance and control,” Proceedings of the Joint Automatic Control Conference, San Francisco, pp.694-699, 1976.
[11] Raibert, M. H. and Craig, J. J. “Hybrid position/force control of manipulators,” ASME, Journal of Dynamics Systems, Measurements and Control, Vol.102, pp.126-133, 1981.
[12] Mason, M. T., “Compliance and force control for computer controlled manipulator,” IEEE Transactions on Systems, Man, and Cybernetics, Vol.11, No6, pp.418-432, 1981.
[13] McClamroch, N.H. and Wang, D., “Feedback stabilization and tracking of constrained robots,” IEEE Transactions on Automatic Control, Vol.33, No.5, pp.419-426, 1988.
[14] Ortega, R., Carelli, R., Amestegui, M. and Kelly, R., “On adaptive impedance control of robot manipulators,” Proceedings of IEEE Conference on Robotics and Automation, pp.572-577, 1989.
[15] Lu, W. S. and Meng, Q. H., “Impedance control with adaptation for robotic manipulations,” IEEE Transactions on Robotics and Automation, Vol.7, No.3, pp.408-415, 1991.
[16] Zeng, R. R.Y. and Goldengerg, A. A., “An adaptive approach to constrained robot motion control,” Proceedings of IEEE International Conference on Robotics and Automation, Vol.2, pp.1833-1838, 1995.
[17] Slotine, J-J E. and Li, W. “Adaptive strategies in constrained manipulators,” Proceedings of IEEE International Conference on Robotics and Automation, pp.595-601, 1987.
[18] Nshvhsufhuti, A. and Garg, D.P., “Adaptive control and impedance control for dual robotic arms manipulating a common heavy load,” Proceedings of IEEE Conference on advanced intelligent mechatronics,Vol.2, pp.683-688, 2001.
[19] 陳威帆,直流馬達之適應性運動控制研究,國立台灣科技大學機械工程研究所,碩士學位論文,2006。
[20] 盧俊翰,機電整合系統之順應運動控制器設計與實作,國立台灣科技大學機械工程研究所,碩士學位論文,2009。
[21] 林珈鋒,馬達動態行為之阻抗控制研究,國立台灣科技大學機械工程研究所,碩士學位論文,2007。
[22] Huang, A. C. and Kuo, Y.S., “Sliding control of nonlinear systems containing time-varying uncertainties with unknown bounds,” International Jounal of Control, Vol.74, No.3, pp.252-264, 2001.
[23] 郭有順,不確定時變系統之適應控制研究,國立台灣科技大學機械工程研究所,博士學位論文,2002。
[24] 羅岳修,剛性機械手臂之適應阻抗控制,國立台灣科技大學機械工程研究所,碩士學位論文,2002。
[25] 簡銘志,以函數近似為基礎之機械臂適應阻抗控制,國立台灣科技大學機械工程研究所,碩士學位論文,2002。
[26] 黃安橋, 適應控制理論,國立台灣科技大學機械工程研究所,上課講義,2004。
[27] 張昫揚,長行程奈米定位系統研究,國立中興大學機械工程研究所,碩士學位論文, 2002。
[28] 許鈞皓,音圈馬達伺服控制之研究與實作,國立台灣科技大學機械工程研究所,碩士學位論文,2010。
[29] 徐慶鐘,音圈馬達之出力控制系統之研究,國立成功大學航空太空工程學系,碩士學位論文,2007。
[30] 林峰緒,秤重機負荷元之最佳設計,國立中興大學生物產業機電工程研究所,碩士學位論文,2004。

[31] Huang, Li., Ge, S. S. and Lee, T. H. “Neural network based adaptive impedance control of constrained robots,” Proceedings of the 2002 IEEE International Symposium on Intelligent Control, pp.615-619, October 2002.
[32] Yong, Cui and Junku, Yuh., “A unified adaptive force control of under water vehicle-manipulator systems,” Proceedings of the 2003 IEEE International Conference on Intelligent Robots and systems, pp.553-558, October 2003.
[33] Han Me Kin, Chang Don Lee, Doo Hyeong Kim and Kyoung Taik Park, “Impedance control of robot manipulator using artificial intelligence,” IEEE international conference on control, pp.1891-1894, 2010.
[34] Keisuke Mouri, Kazuhiko Terashima, Panya Minyong, Hideo Kitagawa and Takanori Miyoshi, “Identification and hybrid impedance control of human skin muscle by multi-fingered robot hand,” proceedings of the IEEE/RSJ international conference on intelligent robots and systems, pp. 2895-2900, 2007.

QR CODE